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CHAPTKK 9 

THL; QUANl'IZATION OF GEOMETHY 

Bryce S. DeWitt 

(9.1)  Introduction. J; 

The development of fundamental concepts.in theoretical physics 

since 1900 has teen very much a story of the epistemological analysis of 

space and time on the one hand and, within the framework of quantum 

mathematics, of the notions of observation, measurement, and indetermin- 

ism on the other. These two aspects of physical theory have always re- 

mained sharply distineuished, in spite of the profound influence that 

each has exerted on the other and the deep connection which undoubtedly 

•exists between them.  This chapter is an attempt to indicate the nature 

«if and ideas involved in the problem of removing this division in physics 

in a manner which goes beyond the already familiar superposition of the 

ideas of special relativity upon a quantum framework. 

In a restricted technical cense the problem under consider%ticn 

is referred to aaT'the quantization of the gravitational field."  It 

should be stated at the outset that there is no experimental motivation 

for the investigation of this problem whatsoever.  The inescapable lessons 

which Nature has been "teaching in the laboratory during the past sixty 

years, concerning her fundamental- syninetries and the.group theoretical . 

• properties, of "the ti^thematical' fojWisms. which describe her, have fallen 

short, of providing"a cön^lete synthesis of the observational viewpoint in 

physics. The motivation for "quantizing the gravitational field" therefore 



consists solely in the fact that the program is utterly logical.    It 

demanSs no new hypotheöee..   It rests completely on the General theory of 

relativity and on conventignal quantum theory,.of which the latter has 

been0estahliBhed as correct beyond*aii doubt, while the former,  although 

lacking as firm an experimental' foundation, has, tecause of its beauty 

and powerful viewpoint, deeply influenced better established «reaa of 

physics. 0 

One should, of course, not fail to mention certain speculations 

which have been made from time to time (Pauli, 1956; Klein, 1955, 1957; 

Landau, 1955; Deser, 1957) concerning the possibility that a quantum- 

'fluctuating gravitational field may remove the divergences in conventional 

relativistic quantum field theories, by providing a natural "cut-off." 

We shall have occasion later to discuss such a natural limit.  However, 

there exists as yet absolutely no concrete mathematical evidence either 

to support or to .deny these speculations. A l^ng program of formalism 

building and calculation is an unavoidable prerequisite. We shall there- 

fore dismiss this problem from discussion and turn to the fundamental 

considerations which will determine the character of the formalism itself. 

The problem of constructing a formal ism for quantum gravidynamics 

has been under ^udy for at leaste the past dozen years and has proved to 

be a particularly vexing one.  No attempt will be made here to give an 

historical survey of the work that has been done, although lessons learned 

from it will constitute an important factor in controlling our method of 

procedure. The bibliography at the end of the chapter contains a fairly 

con^lete list of references to work appearing after 1955«  For references 

to earlier work the reader should consult the article by Bergmann in the 



proceedings of "The Jubilee of Kelativity Theory" (Bergmann, 1956). 

The problem may he approached from either of two viewpoints, loosely 

described as the "flat space-time approach" and "the geometrical approach".  In 

the flat space-time approach, which has been investigated by several authors 

(Feynman, 1957; Thirring, 1959; Gupta,1952, 1957; Belinfante, 1957; Birkhoff, 

19^j Moshinsky, 1950; Rosenfeld, 1950) tho gravitational field is regarded 

as Just one of several known physical fields, describable within the Lorentz- 

invariant framework of a flat space-time.  Its couplings with the other fields 

are largely determined by experiment together with considerations of simplicity 

involving the mathematics of spin-2 fields. These couplings lead to a contrac- 

tion 01? elongation of "rigid" rods and a retardation or advancement of "standard- 

clocks, which are independent of the individual characteristics of these luetru- 

•nents, in the proximity of gravitating matter as well as in regions containing 

strong gravitational radiation. 

In the geometrical approach to quantization, on the other hand (which owes 

so much to the work of Bergmann see bibliography), the theory of gravitation 

is regarded in classical Elnsteinian terms as a theory of the geometry of 

space-time, in which rigid rods and standard clocks are themselves regarded 

as providing the local definition of invariant intervals. Both the geometri- 

cal and flat space-time points of view have the same real physical content. 

However, it has been argued that the flat space-time approach provides more 

immediate access to the concepts of conventional quantum field theory and 

allows the techniques of the latter theory to be directly applied to gravita- 

tion. While there is merit in this argument, too strong an insistence upon 

it would constitute a failure to have learned the lessons which special 

relativity has itself already taught. Just as it is now universally recog- 

nized as inconvenient (although possible) to derive the Lorentz-Fitzgerald 



contraction from relativistic modifications in the force laws between atoos, 

so it will almost certainly prove inconvenient at some stage to approach 

space-time geometry, even in the quantum domain, in terms of fluctuations 

in standard intervals which are the same for all physical devices and hence 

unobservahle. In both cases it is the existence of an underlying invariance 

group which really controls the interpretation of the for^lism. In this chap- 

ter the geometrical approach will be firmly adhered to and the invariance group 

will be placed as much as possible in the foreground. 

Unfortunately it is precisely the existence of the coordinate invariance 

group of general relativity which is responsible for most of the difficulties 

which have been encountered in attempts to quantize geometry« It may be shown 

by quite general arguments (Utiyama,1959) that the existence of such a group 

always gives rise to constraints which must be satisfied by the "initial data" 

• •  chara(*erizin6 individual solutions of the dynamical equations. Although 9 

great concentration of effort has been brought to bear on the problem of con- 

straints, no one has yet found a way to formalize the problem without introducing 

the canonical fundamentals of a Haniltonian or quasi-HAmlltonian theory (Dlrac, 

* 1958, 1959; Arnowitt, Deser and Misner, 1959, I960; Anderson, x^S, 1959; Berg- 

mann, 1956,1958). The canonical approach, however, treats space and time asym- 

metrically and does not fit comfortably with the invariance group.  In certain 

respects it» represents a retreat back to the flat space-time viewpoint— par- 

ticularly when asynrototically Minlcowskian coordinate conditions at infinity are 

imposed. Mojpeover, the overriding need to discover a "reduced Hftmiltonian , 

which the constraint problem imposes, has sometimes led to the extravagant 
1 

• claim that the canonical formalism is essential to the quantization program. 

The canonical viewpoint represents an endeavor to maintain close contact with 

familiar parts of quantum' theory by casting quantum gravidynamics into 
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conventianal language.    However,  the resulting fomBliem becomes quite com- 

plicated already at an elementery level.    Furthermore, it is found to he 

rather removed from immediate and local invariant phj/sical concepts.    The 

possibility must therefore be considered that the conventional language either 

asks the vrong questions or else poses them incorrectly. 

■   At this point opinion divides.     Some workers feel that however arbitrary 

the distinction between spa«! and time may be,  the conventional language is 

f: -both necessary and appropriate.    Others,  including the present author, feel 

that a language which is manifestly coveriant at every stage is not only desir- 

able but attainable.     In the following sections a possible way to develop such 

a langua^i will be indicated.     In this development Hamiltonian ideas are dis- 

• pensed with entirely and space-time is treated in a completely homogeneous 

Tashion. 

A basic tool in what follows is a definition of the classical Poisson brac- 

ket by means of Green's functions, which is independent of any definitions of 

pairs of conjugate variables and which is,   in effect, a straightforward exten- 

sion of a definition originally proposed by Peierls  (1952).    The point of view 

will be adopted that Poisson brackets (i.e.,commutators)  should be defined only 

between invariants,   i.e.,  quantities which are invariant not only unde.r the 

group of coordinate transformations but also under any other Infinite dimen- 

sional transformation groups possessed by the dynamical systems under consider- 

ation.    This automatically eliminates the need for subsidiary conditions, which 

have always to be specially tailored' to each individual system and which have 

proved so often botherson»--In the past. . Furthermore, this approach is in     . 

accord with the foundations of the quantum theory as expressed in tlfe general 

theory of measurement.    Real physical measurements can be performed only on 

group invariant quantities,  and the interference between two measurements 

. 
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which, via the Uncertainty Principle, defines the commutator, is most immed- 

iately described not in terms of canonically conjugated variables at a given 

instant, but in terms of,the Green's functions which express the laws of 

propagation of ra«ll.disturbances'and.which satisfy certain fundamental recip- 

rocal relations. 

In quantum electrodynamics this role of the Green's functions was demon- 

strated at a very early date in the classic paper of Bohr and Rosenfeld (1955)# 

which made no use of subsidiary conditions, and to which the author of the 

present chapter is heavily indebted as will be Immediately apparent in the 

sections to follow. This indebtedness may seem in one respect surprising, not, 

to be sure, tcecause of any present-day diminution in the importance of this 

classic work, but because its coKent, as Bohr and Rosenfeld have themselves 

repeateily indicated, was guided in every way by the existence of an already 

developed formalism, whereas here we are trying to "put the cart before the 

.horse" to develop the formrlism itself with the aid of the ideas of the 

theory of measurability. The reason for this, however, lies in the very 

nature of the general theory of relativity and of its extremely close kinship 

2 
in point of view with the conceptual foundations of the quantum theory. 

Furthermore, having the work of Bohr and Rosenfeld already before us is some- 

thing quite different from doing the same thing. In Ignorance of it, for 

another, more complicated, system. 

Now, there are certain immediate obstacles to carrying out a program along 

the above lines. The first consists in the fact that in the theory of the 

pure gravitational field the invariants which come easily to mind (e.g., 

space-time integrals of scalar densities formed out of the metric and its 

derivatives) have not so far proved to be useful objects with which to test 
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the theory throushl1Gedankenine86unsen." No one has yet found a way of using 

these objects to obtain detailed inforraation on the internal dynamics of 

the field. At the present stage of the theory what appears to be needed, if 

one insists on maintaining manifest covariance, is a means of constructing ; 

local invariants. A possible procedure is to Introduce four independent 

scalars ^ , A = 0, 1,2,3, formed out of the metric tensor and its deriva- 

tives and then to use these to define an intrinsic coordinate system. To use 

such a coordinate system for the purpose of constructing local invariants one 

picks a set of four numbers T]
A
 and looks at the coordinate mesh defined by 

the C* at the point where ^ » TJ
A
 (which will be unique if one is lucky). 

Any looal geometrical quantity referred to the local mesh at this point will 

then provide a set of one or more local invariants. A sample set is 

TAB(T,) S / i? iS ^~ ^V(X) ^ " C(X)) A '      (9*1*1) 
where T v is any miKed tensor formed out of the metric and its derivatives. 

The ^B/&cv are the gradients of the f ,  and ö(0/ö(x) and 9x^/5^ &re 

respectively the determinant and the components of the inverse of the matrix 
TO y 

formed from these gradients. The TA  are the components of the T^  in 

the intrinsic system, taken at the point where the scalars t,  have the 

values IJA respectively.  More complicated geometrical objects may be handled 

in a similar fashion. 

Invariants constructed in this manner have been studied by Komar (1958). 

(See also Bergnann and Komar, i960). As scalars he has used the four 

"eigenvalues" of the Rlemann tensor (see Geheniau and Debever, 1956; Pirani, 

1957)« T116 use of these scalars, however, and indeed of almost any conceivable 

scalars built out of the metric tensor and its derivatives, has a serious 

I 



defect. Such sealars are functionally maependent only In regions of space- 

time possessing a degree of inhomogenelty and asymmetry sufficient to rule 

out the applicability there of any of the known exact solutions of Einstein's 

equations as well as any more general solution satisfying "pure radiation- 

conditions. The situation is precisely analogous to one which occurs in 

hydrodynamical theory (see Courant and Friedrichs, I9W In which. In the 

case of one dimensional isentroplc flow, for example, certain functions of 

the density and velocity, known as Riemann invariants, can he used to define 

an "intrinsic" coordinate system, the mesh of which is formed by the "char- 

acteristic lines." The intrinsic system can be used to identify space-time 

points, however, only in complicated flow situations involving interacting 

waves; it becomes degenerate in precisely the cases of constant flow and j 

so-calle "simple waves." 

in order to avoid difficulties of this kind we shall introduce directly       | 

•       • 

I 
into the discussion an additional physical system. This system will serve 

to furnish us with a reascnably fool-proof set of intrinsic coordinates ■ 

while at the same time forming a conbined physical system with the gravita-       j 

tional field. In principle, any additional system which provides a "useful" 

set of four scalars will do. Actually, we shall choose the most intuitively      | 

obvious system possible, namely, a st.ff elastic medium carrying a framework 

of clocks. Sections 5 and 6 are devoted to the description of this system, 

which proves to be readily amenable to covariant mathematical analysis. | 

Naturally the physical constitution of the medium as well as of the clocks is 

not dealt with on an atomic level, but only phenomenologlcally. The limita-  ■    | 

^tions which this imposes on the conclusions of the present chapter will b* 

discussed later. 

I 
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It might be sv^posed that the elastic medium with its clocks has merely 

a technical utility, constituting an otherwise foreign element in the dis- 

cussion. Such is by no means the case. The role played by the medium in 

providing a physical coordinate system proves to be a fundamental one, as 

the measurement theoretical analysis will reveal with particular clarity, 

and serves to bring the conceptual foundations of both the general theory 

of relativity and the quantum theory into sharp focus. A clock carrying 

medium of some kind is needed, if only in limited regions of interest, in 

order to give an operational meaning to the concept of "space-time geometry" 

In the first place. One may, to be sure, hope that the Introduction of a 

purely phenomenologlcal medium is only an interim measure, which will be 

superseded eventually by a comprehensive unified theory of elementary part- 

icles fod fields* containing Its own theory of measurement as well as its own 

Interpretation.  It has, in fact, been suggested that such a comprehensive 

theory might already be achievable within the framework of geometry alone 

(Misner and Wheeler,. 1957). Suffice it to say, however, that present formu- 

lations of gravitation theory are very poorly suited indeed to the task of 

yielding such an outcome. 

In the following section (Jj2) the possibility of bypassing the canonical 

language is proved through a demonstration of the role of the Uncertainty 

Principle and the theory of measurement in the definition of the Polsson 

bracket for an arbitrary system.  It is shown in a quite general manner that 

the -quantization of a given system implies also the quantization of any other 

system to which it can be coupled.  By a principle of induction, therefore, 

the quantum theory must imnedlately be extended to all physical systems, 

including the gravitational field. Moreover, the pricise form of the 
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commutator between any two observables Is uniquely specified. The properties 

of the Green's functions which enter naturally into this specification, 

through their ability to describe the propagation of «mall disturbances, 

are studied in Section J« The existence of Infinite dimensional invarlance 

groups is easily ta^en into account, and the consistency of the Folsson 

bracket definition is established. Although not essential to the quantization 

program, nor eyen to the specification of quantum states, the generator of 

infinitesimal space-time displacements Is derived as an Illustration of the 

general methods. In Section k these methods are applied to the free particle, 

* as a familiar example, and to the relatlvlstic clock, which is a basic tool in 

the theory of the measurement of space-time geometry, as has been emphasized 

by Wigner (1957) (see also Salecker, 1957, and holler, 1955) and as will be 

evident in the present work. After further application of these methods to 

the elastic medium in Section 5, and to its interaction with the gravitational 

field and clock framework in Section 6, the gravitational field itself is 

studied in some detail in Section 7. The problem of finding the generator of 

infinitesimal displacements with respect to the intrinsic coordinate system 

provided by the elastic medium together with its clock framework is posed 

in terms of variations in the action functional, and the difficulties 

involved in solving the problem are explicitly shown. The significance and 

range of validity of the "weak-field" approximation is examined and the 

importance of the Riemann tecsor as an approximate invariant is emphasized^ 

Gravlton spin and polarization states are defined in terms of the Fourier 

decomposition of the linearized Riemann tensor, and the commutators of 

the weak-field theory are given.  Section 8 is devoted to a study of 
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the question of the actual measurability of the gravitational field in the 

quantum domain, gollowing closely the arguments of Bohr and Rosenfeld for 

the electromagnetic field. Hie measurability is verified to lowest order of 

perturbation theory, and the statistical predictions of the weak-field theory 

are confirmed, provided conceptual test bodies of "Bohrian" delicacy are 

permitted. The analysis, however, must be extended to include an exami- 

nation of the stresses in the test bodies, as well as in the various 

compensation mechanisms and momentum-measuring projectiles (photons) 

which are used, problems which Bohr and Rosenfeld could ignore.  In this 

extension the fundamental length of quantum gravldynamics (see below) 

makes a repeated appearance as a lower bound on the size of allowable 

measurement domains, from which it is necessary to draw the conclusion 

that the very concept of "field strength" can have no objective classical 

meaning for domains smaller than this, even if any meaning is in fact 

left to it at such a microscopic level after the limitations imposed by 

the observed scheme of known elementary particles are taken into consider- 

ation.  Finally, in Section 9, the author expresses his views on the 

outlook for the future of the quantum theory of geometry. 

The whole chapter is divided into two parts, each having technical 

appendices at the end.  Units are employed for which h » c = l6itG « 1, 

where G is the gravitation constant. All quantities axe  thereby reduced 

to dimensionless numbers. In these units the masses of the familiar 

-22     -l8 
elementary particles lie in the numerical range 10   to 10   while 

-32 
the units of length and time are equal to LlUU x 10 ^  cm. and 

3.82 x 10   sec. respectively. Attention should be c»lled to the 

following points of notation: The signature of space-time will be taken 

11 



as    - +++.    The Rlenum and Ricci tensors will "be taken in the forms 

p    TarT    -FT+rprT-rprT, i9.i.2) \ivx Vv *»       cm »v       av   pii on   pv   ' 

v - v/ • «■ V • (.9-1-3) 

vhere r   *    is the affinity and the ccamaa denotes the ordinary derivative, 

übe *oovarieuat derivative will be indicated by a dot. 
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(9.2) Th. role of the uncertainty Prlnc-i.le and thg theory of measurement 

in the definition of the Polsson bracket. 

We.begin by considering a general physical system'describable by 

a set of localized real dynamical variables /. These variables will  . 

be functions of one or more continuous parameters, or "coordimtes." For 

deflnlteness we may regard them as functions of four space-time coordi- 

nates / .  Everything we say, however, will be equally applicable to 

systems with either more or fewer parameters, in particular to systems 

having only a finite number of decrees of freedom, with "time" as the 

single parameter. Different points of space-time will be distinguished 

ty means of primes:  x, x«, x", etc. For compactness-the point at which 

a given variable, such as ^ , is evaluated will be Indicated by affixing 

primes to the index appearing on the variable:  e.g., O1" .  For economy 

in the use of primes the symbol . will also sometimes be used in place 

Of    x to designate a point in space-time, 'l^wer case I*tin indices frorr- 

the beginning of the alphabet (a, b, c ...) will always be associated 

•with the symbol z , while those from the middle of the alphabet (i, J, k ...) 

will be associated with the%ymbol x . 

The dynamical properties of the system will be specified by an 

action functional S . For our purposes this functional may be regarded 

as a purely formal expression^ to be used to fix the form of the dynami- 

cal equations and to determine- their transformation properties. For 

systems with "localized action" 3 appears as an integral, over all^ 

space-time, of any one of a number of equivalent functions of the • 

13 



(and their derivatives up to some finite order) which differ fron one 

another hy total divergencee.    Questions of the convergence or divergence 

of this integral are irrelevant3 (although they are not irrelevant for 

its variations) and the dynamical equations themselves may without am- 

biguity he written in the form 

(9.2.1) 

where the coma followed by an Index is here used to denote the variational 

or functional derivative with respect to «J1 at a point. Furthermore, 

it docs not generally matter how many variables O1 are used to describe 

the system, as long as all descriptions are equivalent. Some of the 0 

nay, through the dynamical equations, bo expressible in tenaa of deriva- 

tives of others, for example. 

Even when the minimum possible number of variables is chosen in 

the action functional, it does not necessarily follow that any one of 

them is physically measurable when taken by itself.  It will often happen 

that a continuous range of values for the O1 corresponds to one and 

the same physical situation and hence that these values cannot be physi- 

cally distinguished.  Changes from one set of values to another in the 

given range are brought about by a set of transformations forming an in- 

variance group for the system, which expresses certain symmetry properties 

possessed by the system.  In the case of infinite dimensional invariance 

groups, which will be our main concern here, an infinitesimal transfor- 

mation belonging to the group produces a variation in the O1 having the 

k general form 

6«1 -J  Rj,  tr    dV       , (9-2.2) 

1U 

I 
I 

I 
1 
I 
I 



where the 8(L are arbitrary infinitesimal functions known as grcnip 

parameters« Here, capital Latin indices tram the middle of the alphabet 

(L, M, N...) will be associated with the symbol x , while those from the 

beginning of the alphabet (A, B, C... ) will be associated with the symbol z. 

The representation of the group which the variables ♦  provide, through 

Eq. (9.2.2), need not be linear but may be quite general. The only restric- 

tion on it is the identity 

where the cLA „, are the structure constants of the group, which in turn 

satisfy the identity 

Typically R1., will be a "differential operator" that is, a linear ccmbi- 

nation of the delta function and its derivatives with coefficients involving 

the ♦  and their derivatives up to some finite order. 

The invariance of the physical situation under the transformation (9.2.2) 

is assured if the action functional remains invariant under it. A group in- 

variant I is evidently characterized by the condition 

/< 

/ 
I .R1. dSc - 0 . (9.2-5) 
»1  A 

The action S , in particular, must satisfy this condition independently of 

the dynamical equations.  This means that the dynamical equations themselves 

are not all Independent of One another. As has been mentioned in the Intro- 

duction such a situation is always associated, in the canonical formalism, 

with the problem of constraints.  It should be pointed out, however, that a 

functional relationship between the dynamical equations exists only in the 
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case of infinite dinensionel groups.  In the case of finite dimensional 

groups the integral is eliminated from Eq, (9-2.2), and the S«1 cannot 

generally toe made to vanish in remote regions. Therefore the integration 

by parts which always enters in the derivation of Eq. (9-2-5) cannot be 

performed, and a total divergence must be added to the Integrand of this 

equation.  Instead of encountering a constraint problem, one is thereby 

led to a conservation law which holds when the dynsmical equations are 

satisfied (Noether, 19l8). Beyond this the effect of finite dimensional 

invsriance groups ft limited to insuring covariance of the dynamical 

equations, that is, their invariance in form under the transformations of 

the group. 

By taking the variational derivative of Eq. (9-2-5), with I 

replaced by S, it is easy to show that under the group transformation 

(9.2.2) the dynamical equations (9-2.1) are replaced # linear combinations 

of themselves. We have 

Since this relation must hold independently of the particular solution of 

the dynamical equations which is involved, the change (9.2.2) in the 

dyaamical variables is physically unobservable, at least within the frame- 

work of the system S itself. The change can become observable only as 

a result of coupling with an additional "external- system which destroys 

the invariance property in question.  If the additional system maintains the 

invariance property, on the other hand, the change will remain unobservable. 

I 
1 
I 

1 

1 

1 
1 
I; 
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It is precisely through a study of coupling with additional 

systene that one is led to a defiultiou of the Poisson hracket which is 

valid under the most general circumstances.  The introduction of an addi- 

tional system is, of course, expressed by a change in the fiction functional. 

We shall begin by considering the simplest possible change: 

S + eA (9-2.7) 

where A is an invariant of the original system and where the effect of 

the original system on the added system is neglected, the pertinent 

dynamical quantities of the latter being lumped into the "constant" e , 

which will be regarded as small. The change (9.2.7) will induce a change 

in the dyneiuical variables ♦ , the precise nature of which depends on 

the boundary conditions selected. For example, we may adopt advanced 

boundary conditions in which the dynamical states of the system before 

and after the change are taken to coincide in the remote future, or re- 

tarded boundary conditions in which the dynfyil cal states are taken to 

coincide in the remote past, or a set of boundary conditions intermediate 

between these two.  It Is to be noted that the concepts of "past" and 

"future" require a hyperbolic character for the dynamical equations, but 

nothing uoro. JtVen if the "metric" which determines this hyperbolic 

characiser is itself a dynamical variable these concepts retain their 

validity. 

The changes in the 0  corresponding to advanced and retarded 

boundary conditions will be denoted by 6. *  and 5 i>  respectively. 

The subscript A will sometimes be omitted where no ambiguity can arise, 

but for the present we keep it. Hie  changes £>*'*      are,  of course, not 

uniquely determined if the system possesses an invariance group, but are 
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defined pnly modulo an tmobBervable transformation (9* 2.2).    The changes 

&,**    =    Tß  .   6* O1 d^x + 0(e2) , (9.2.8) A J      >1    A 

in any group invariant B , however, are well defined in virtue of the 

invariance condition (9.2.5).  It will be convenient to introduce the 

quantity 

\*   s e^O i&A"B    ' (9-2-9) 

The choice of the retarded boundary condition here, rather than the 

advanced, anticipates the "one way" character of the measurement process 

in the description of which this quantity will presently be used. 

In the limit of very small € the B "i»1 satisfy the equation 

j S,iJ« ^ ^ '^ " " ^i  '       (9.2.10) 

in which the quantities S . ., and A ,  are evaluated using the original 

values of the dynamical variables. With the "inhomügeneous term" on the 

right hand side omitted, (9.2.1u) becomes the equation which describes 

the propagation of small disturbances in the system. From its linearity, 

which permits the application of the superposition principle, the follow- 

ing idontities, involving group invariants A, B, C, may be readily 

inferred; 

DA(B + C) = DA B + DA C    , (9.2.II) 

D(A+B) C = DA 0 + DB C    , (9.2.12) 

D^ 0 - 3 DA C + A DB C    . (9.2.13) 
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Furthermore, if c is a numerical coefficient or a variable referring 

to another system not dynamically coupled to S , then 

D A B = c DA B   . (9.2.U) 
cA        A 

The Poisson bracket of two invariants A and B will, for all 

physical systems, he defined by 

(A, B) s DA B " 
D
B 
A (9-2.15) 

in the  case of systems possessing no dynamical constraints this definition 

has been shovn by Peierls  (1952)  to reduce to the conventional one.    The 

extension of the definition to the general case will here be made by 

appealing to the  theory of measurement.     It will be noted immediately 

that the usual identities 

(A,  B)    -    -  (B, A)        , (9-2.16) 

(A,   Brf-C)     -     (A,   B)  +   (A,   C)       , (9-2.17) 

(A,   BC)     -     (A,   B)C + B(A,   0       , (*2.l8) 

are  satisfied.     The verification of the Poisson-Jacobi  identity*,  however, 

requires an examination of the laws of propagation of disturbances,  and 

will be postponed to the next section. , 

The  system    S    is formally quantized by relating the  conmulator 

to the Poisson bracket in the familiar manner , 

[A,   B]    =    i(A,   B)       , (9-2-19) 

which leads inmediately to the Uncertainty Principle 

M AD   ~      |<(A,   B)>| , 
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where AA and AB are, for example, the root mean square deviations 

of A and B respectively from their average values <A> and <K> in 

the quantum state in question, and where " - n means "no smaller in 

order of magnitude than." We shall devote the remainder of this section 

to showing that if the Uncertainty Principle holds for one system in the 

fox* (9.2.20), with the Poisson bracket given by (9.2.15), then it .must 

• hold in that form for all systems. If a description.of Nature is demand: 

ed which avoids the iwe of."hidden variables," therefore, the commutator 

must in all cases be given by Eqs. (9.2.19) and (9.2.15). 

The Uncertainty Principle is a statement about the fundamental 

limitations imposed by the quantum theory on the relation between measure- 

ments and the possibilities of making predictions expressed in classical 

language.  Suppose the observable A has been measured with an accuracy 

AA ; wbat does this imply in the way of restrictions on Ühe accuracy of 

predictions concerning the outcome of subsequent measurements? Before 

giving a complete answer to this question let us first take note of the • . 

fact that the measurement of a given observable will, Cn general, occupy 

*• a finite interval of time, which may itself be involved in the definition 

of the observable, although in many simple cases this interval may be 

effectively regarded as vanishingly small. Let us consider the case in 

which the interval associated with the observable B is subsequent to 

that associated with A .  It will be shown that as a result of the un- 

controllable disturbance in the system produced by the measurement of   • 

A the use of a classical value for B in making predictions about the 

outcome of subsequent measurements of quantities which depend on B is 

limited to the extent of an uncertainty AB which is given by Eqi (9-2.20). 

i 
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The "classical value" to be used for B in this case is its average 

value <B> in the quantum state resulting from (or "prepared" by) the 

measurement of A . For simplicity in the subsequent discussion, 

however, the brackets <> will be omitted whenever it is clear from 

the context that the "classical value" is meant. 

The relation between A and B is a completely -reciprocal one, 

and because of the time reversibility of quantum mechanics the above 

situation may equally well be described in terms of a limitation M on 

retrodictions conditioned by a measurement of B with accuracy AB in 

the future. This reciprocity is revetted with particular keenness in 

the case in which the time intervals associated with A and. B overlap. 

The simplicity of the previous.description, in which the measurements 

of A and B could be ordered in temporal sequence, is missing in this 

case, and the state of the system must here be regarded as conditioned 

simultanec^isly by the results of both measurements, together with their 

mutual interference.  It is the remarkable property of the quantum theory 

that its formalism consistently mirrors these various cases in such a 

simple and beautilil way.  Furthermore, the generality of this correspon- 

dence between formalism and Nature is in complete harmony with the 

principle of relativity. 

Measurements are performed on a system S through coupling with 

a second system Sa , usually called the apparatus.  In principle, any 

group invariant can be measured through suitable choice of apparatus and 

couplinG- We shall assume that the Uncertainty Principle (9.2.20) holds 

for the apparatus.  It will then follow that it holds also for the 

system S and, by judicious choice of apparatuses and couplings (those. 
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in fact, by which all physical discoveries have to date been made), may 

therefore he extended to all (known) physical systems. 

Wc shall begin by considering the measurement of a single observable 

A .  The coupling which is suitable for this measurement is one which 

brings about a change in the action functional for the combined system of 

the form 

S + S  -♦ S + gxA + S 
a a 

(9-2.21) 

Here g is an adjustable "coupliog constant" and x is some "convenient" 

apparatus variable.  For example, in the Stern-Gerla.h experiment, where 

A is an atomic spin,  x may be taken as a finite time integral of the 

z-component of the position of the atom in a magnetic field which is in- 

homogoneous in the z-direction, the strength of the field and the ma^i- 

tude of the atomic magnetic moment being described by g .  Likewise, in 

a field measurement, where A is an average of the field over some space- 

time domain,  x may be a similar time integral of the position of the 

center of an appropriate test body, the "charge" on the test body being 

contained in g .  The only abstract difference between these two examples 

is the fact that the eigenvalues of the observable in question come in 

one case from a discrete set and in the other case from a continuum. 

Since ve are, in this chapter, mainly interested in the latter case we 

confine our attention to it. 

The measurement of A is carried out by determining the deviation 

in the value of some other suitable apparatus variable  « , as a result 

of the coupling, from the value it would have had in ttac absence of the 

coupling. The suitability of the variable « is conditioned by the 
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requirements 

D x 
it 

(x, «) = D n ^ 0 (9.2.22) 

That 18,  n describes a dynamical state of affairs subsequent to the 

coupling process, so that although x has a retarded effect on n ,  n 

has no retarded effect on x . For cxanplc, in the Stern-Gerlach experi- 

ment n might be the position of the point at which tho atom strikes 

a photographic plate after having passed through the magnetic field, 

while in a field measurement n may be the momentum of the test body 

at the end of the time interval involved in the coupling term gxA , as 

observed vi£ the Doppler shift of photons, for example.  Of course, it 

is in the analysis of the finax observation, performed upon the appaÄtu* 

variable it , that the source of many of the polemics concerning the 

conceptual foundations of the quantum theory lies.  But the resolution 

of the difficulties inherent in this analysis, whether in terms of a 

discontinuous "collapsible" behavior of wave functions, as demanded by 

the Copenhagen school (see Heisenberg, 1955), or by insistence on an 

isomorphism between the real w^rld ozid  an infinitely "branching" univer- 

sal wave function (see Everett, 1957, and Wheeler, 1957), or with the aid 

of some other viewpoint, is larg'ely'a metaphysical problem, irrelevant 

to the present discussion. 

The analysis of tho measurement of A itself reduces to simplest 

form when the coupling term gxA can be regarded as small in comparison 

with that jortion of the apparatus action Sa which corresponds to the 

time interval involved in gxA .7 By choosing a sufficiently macroscopic 

(i.e., "classical")  apparatus this can always be arranged. The change 
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in the apparatus variable n as a result of the coupling nay then be 

approximated by 
© 

6'n = BAD it    , (9.2.23) 
x 

where the factor D « oay be evaluated as if the apparatus were uncoupled 

to the system S . Actually, Eq. (9-2.23) is not yet sufficiently 

accurate for our purposes. FCr, in order to analyze the measurement 

process in the truly quantum domain it is necessary to Xpise  into account 

small deviations in A from the "classical value" which appears in 

(9.2.23), in particular, the deviation which is due to the measurement 

process itself. The latter is given to lowest order by # 

t>'A    = 6XD. A  , #(9.2.2lt)    ;.. 

• • 

and this is thea to be inserted into the improved formula 
• .  I 

•  . t 
*  . 5" n    = 6(A + 5" A)Dv n  , (9-2.25) 

which gives.the deviatiqp in n now correct to second order.  Here again, 

the factor DA is to be evaluated in the absence of coupling. 

Solving Eq. (9.2,25) we obtain the"formula 

A ^— - gx DA A  , (9-2.26) 
SV 

which cxprcssca A in terms of the "experimental dtita," und from which 

it follows that the accuracy in the measurement, of • A will be tjiven by 

AA -■ —^—  + g|D. A|Ax    , (9.2.27) 
B|DX«| A 
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where    Ait    and    Ax    are the uncertainties in the values of    n    and    x 

in the original apparatus state.    Since the Uncertainty Principle is 

assumed to hold for the apparatus, we have 

Ax Aä   ~     |(x,n)|     =     |Dxn| (9.2.28) 

whence 

which, upon minimization with respect to    Ax ,  reduces to 

M |DAA| 

(9*2.29) 

(9.2.30) 

In those cases in wtiich the.time interval associated with A may 

be taken vanishing^ small (e.g.* impulsive measurements in nonrelativistic 

particle dynamics) the quantity DAA will usually be o<iual to zero, and 

the observable A is then measurable with unlimited accuracy. Unlimited 

accuracy, however, should be attainable in the measurement of any single 

observable, and this seems to be contradicted by Efc. (9-2.30) which at 

first sieht implies that there is an absolute limit to the accuracy with 

which observaUles associated with finite time intervals can be measured. 

The way out of this difficulty was found by Bohr and Roaenfeld (1933), 

who showed that the measuring arrangement can be slightly altered, by 

means of a "compensation mechanism," in euch a way that the correct re- 

sult is obtained.  The compensation mechanism appropriate for the measure- 

12 2 
ment of A is represented by the addition of a term -^ g x DAA to 

the coupling, so that the change in the action now becomes 
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Equation (9.2.24) again holds to first order in g .  But Eq.. (9-2.25) 

takes the form 

5"n >= g(A + &'A - gxDAA)Dxn = sADxn    , (9-2.32) 

correct to second order in g , whence 

X o 

Now, the value of DAA  (or, more properly, of <DAA>)  is generally in- 

sensitive to the quantun fluctuations of the system S , being primurily 

determined hy the geometry and parameters of the measuring arrangement 

and only secondarily, if at all, "by the "classical" or "average" values 

of the system ohservables.  Therefore a compensation device which is 

adequate for testing the predictions of the quantum theory (e.g., in the 

case of field measurements, a set of mechanical springs connecting the 

test body to a stiff coordinate fronework) can be set up in advance of 

the measurement of A on the basis of enly a rough prior knowledge of 

the system observables. The accurate determination of A may therefore 

be made on the basis of Eq. (9-2.33) with a precisioi; which is limited 

only by the accuracy with which n may be determined.  By choosing the 

apparatus sufficiently macroscopic the latter accuracy may bti made very 

high indeed without, at the same time, rendering Ax unduly large. 

The analysis of the measurement of two observables, A and B , 

proceeds in a quite similar fashion. Here it is necessary to introduce 

variables x^, j^ and ^ , n2    from each of two independent apparatuses, 

S   and G  , satisfying the conditions (9.2-22). The systems 8 
a,       a ' 1 S 
al 



and S   may be regarded as fomiag, together, a single apparatus, for 
a2 

which the Uncertainty Principle will again be assumed to hold. As before, 

coi^pensation mechanisms will be introduced, but in this case the mutual 

interference of the two measurements will prevent the congplcte cancella- 

tion of uncertainties. The greatest possible mutual accuracy is attain- 

ed by means of couplings which produce a change in the total action of 

the form 

S + So + Sn  -♦ a1   a2 

S + g^A + 62x2B - | glVDA
A - | e^V^V + V) 

2 b2 2 B    a^^   a2 

The terns in x^2 and Xg2 are compensation terns, while the tern in 

xx  is a correlation term (e.g., in the case of field measurements, 
1 2     ^———— —— 

resulting from the effect of appropriate mechanical springs connecting 

the two test bodlcB involved). As a result of the couplines we have, to 

first order, 

(9-2.35) 8"A = g^ DAA + ygXg DBA   , 

B-B - g1x1 DAB + g2x2 DbB   , (9-2.36) 

and, to second orü.er, 

B-«. = ^[A+6-A - Bi^D A .. | g2x2(DAB + y^K*! 
-L      X ., _L 

= g^A- |*i2X2(DAB- DBA)]DXi«1    •, •• (9-2.37) 
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5-n2 = g2lB + 6-B - | ^^(V + DgA)- *?##**£* 

= .2lB+|SlXl^A
B- V)]V2    ' (9'2*3a) 

whence 

5 n 
A «iVi 

L_ + I e9x9(A,B)   , (9-2.39) 
F^T  2 ^2^2 

B = ""•    l^x^^B)   , (9.2.^0) 
62Dx2

n2 

leading to the sinultaneous accuracy estimates 

e^ 
• 

^B - ^ .1^1(^)1^   ,   .       (9.2^) 

the product of vhich,  upon niniiuization with respect to the product 

AXjAXg    ,  reduces to 

AAAB    "     |(A,B)| , (9.2^3) 

thus verifying the Uncertainty Principle for the system S . 

We may vith confidence therefore take the connutator in the form 

(9.2.19) - (9.2.15) in all future work.  It is to he emphasized that the 

arguments presented here hold with complete generality for all physical 

systems, including the gravitational field.  It is only necessary to make 

oae additional remark, concerxoing the use of the "classical" or "average" 

values of the system observables above.  Some of these observables nay 

occur in products (in quantities like the slowly varying parts of DAB , 
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D^A, etc., for exan^le) or may themselves be expressible as products 

of other observables. Now, the average value of a product may be equated 

to the product of the averaae values only in the limit of high quantum 

numbers, and then only in the case of systems possessing a finite number 

of degrees of freedom. A rigorous classical description of the quantities 

in question will therefore not be strictly valid, particularly in the 

case of quantized fields.  Such a description neglects a number of 

important purely quantum effects, namely, those which give rise to the 

phenomena of vacuum polarization and level shifts as well as to methe- 

matical infinities in the formalism. However, the technical procedure of 

"renormalization" should reinstate the approximate validity (i.e., to 

lowest order) of the classical description, provided the coupling of the 

field to its sources is sufficiently weak and/or there exists a funda- 

mental invariance group which sufficiently dominates the phisics. At 

least this is the case for quantum electrodynamics, as has been empha- 

sized by Bohr and Rosenfeld(1950). The gravitiational field, also, cer- 

tainly meets these specifications, although in this case the procedures 

for renormalization are still unknown. One hopes to be able to lump at 

least some of the infinities together into a renormalization of the 

gravitation constant, but this remains to be seen.  In the following 

sections we shall refer to the use of the classical description for 

all quantities occuring in the derivation of a Poisson bracket (except 

those, of course, which appear in the primary commutator which the 

Poisson bracket evaluates) as the semi-classical approximation. In 

the derivations of the semi-classical approximation all guantites are 

regarded as freely ccranutable c-numbers. The problem of their actual non- 

comnutability will be only briefly considered at appropriat points in the 

discussion. 
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(9.3) ürcenfs functions. 

The laws of propagation of small disturbances in the system S 

are determined by the fundamental structure S,^, appearing in Eft. (9.2.10). 

It is convenient to treat this structure formally as a continuous matrix 

although typically it, like *\%  ,  will actually be a differential 

operator, expressible in matrix, form as a linear combination of the delta 

function and its derivatives up to some finite order (usually first or 

second) with coefficients involving the ^ and their derivatives up to 

some finite order. Because variational differentiation is conrautable 

S  ,  is a symmetric matrix.  It is also a singular matrix whenever the 
»ij 

system possesses an infinite dimensional invariance group.  This follows 

from Eo. (9,2.6), which admits the corollary 

j'^iy^A^   ' (9.3.1) 

whenever the dynamical equations are satisfied.  The RXA , because of 

their "locality" (i.e., they vanish except in the immediate neighborhood 

of Z , for each z ), are true null eigenvectors. 
±. 1 

Because of the singularity of S;ijt  the solutions &A « of 

Eq,. (9.2.10) (as has already been pointed out) are not well defined but 

are determined only up to a group transformation (9-2.2).  It is evident 

that the general solution of Eq. (9-2.10) is obtained by adding (9.2.2) 

to an arbitrary linear combination of particular solutions (with coeffi- 

cients adding up to unity) detcmiuod by appropriate emedary and supple- 

mentary conditions. The boundary conditions to be adopted are already 

I1 

I 

- 
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implied tyy  the ± signs. For the supplementary condition it is neces- 

sary to choose an equation of the form 

/«lA6A**id^ = 0   ' 
(9.3.2) 

where Q.  , like R1.  , is a differential operator which may be de- 

pendent on the O1 , but which is selected in such a way that still 

another similar differential operator P^ may he found for which the 

matrices 

are all ncnsincular.  In the theory of discrete matrices "vectors" 

p A   0     R1  having these properties are easily found by identify- 
i  *  oA '    A 

ing pertinent subspaces, and considerable flexibility is allowed in their 

selection.  The same is true of these quantities in the case of all action 

functionals which lead to consistent dynamical theories.  Furthermore, 

because of the underlying hyperbolic character of the dynamical equations 

B* 
of these theories, the matrices P^, , F^j ,  FA   may be chesen so 

us to possess special properties which allow us to characterize them as 

wave operators. 

A wave operator (let us refer to F , for definiteness) satisfies 

the following two conditions: (l) it admits of bounded nonvanishing 

solutions 8*  to the equaticn 



/ 
FiJ' 

K"        ri    v' d x' (9-3.6) 

and (2) it posscsees unique retarded and advanced Green's functions G 

satisfying the equations 

±i.y 

J 1  'ik- ^"J, ''^, d x" = - ö J' 

f" ■±ik,, F    dV Fk"j« d x 5J' 

(9-3-7a) 

(9.3.7b) 

and the conditions 

.-ij' 

^iJ1 

0 

0 

for 

for 
(9.3.8) 

Here the symbol 6.   denotes in obvious fashion a product of a Kronecker 

delta with a delta function, while "<"  is an abbreviation for "lies to 

the past of" and • ">" is an abbreviation for "lies to the future of." 

In a space-time with hyperbolic metric the definitions of "past" and 

"future" may be made with respect to an arbitrary space-like hypersurface 

through either one or the other of the two points x , Because of 

the arbitrariness of this hypersurface it follows that both Green's 

functions vanish simultaneously when x and x8  are separated by a 

space-like ceodetic interval. 

It will be seen presently that Eqs. (9.3.7a) and (9.3.7b) are not 

independent; one follows from the other Just as in the case of finitt 

matrices.  It is only necessary to bear in mind that the use of the latter 

equation entails an integration by parts, the admissibility of which must 
a 

be checked in context.   It is to be noted, however, that F. f , unlike 

I 
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a nonsinßul.r finite matrix, does not possess a unique inverse; T>oth 

G-1-1' and" -G+iJ,  , as well as liueai- ccantinations of the two, are 

its "inverses." This fact is a direct consequence of the existence of 

funded solutions to Eq. (9-3.6), which my always be added to any "in- 

verse." On the other hand, it is to he recognized that bounded solutions 

of Eq. (9.3-6) cannot vanish in remote regions of spc.ce-tire .uffioiently 

rapidly to be no.rmalizahle (i.e., quadratically intc^blo). For if 

they did, then 'F.y    would possess true null eigenvectors and have no 

inverces at all. 

Consider, now, two arbitrary functions */ , **  . **<*  *PPe- 

together with the wave operator F^, in the following coB-bination: 

V Fij' •/ - ^i*5' FJ'i ■^i)äHx, * 

XT the function. ^ , •/ vanish sufficiently rapidly in remote re- 

I* 

tions of space-time, the integral of this expression over all x will 

„    i<3 a differential operator this implies vanish by symmetry. Since F^, !• a Oirreronxiiai. y 

that the above integral must be reexpresBible in the form 

(9.3-9) 

where f.t.n    is an appropriate homogeneous .gadratlc combination of 

delta functions and their derivatives, with coefficients involving the 

O1 and their derivatives.  Since the identity (9-3-9) involves the 

properties of the functions ^  , •*    only locally, it nust evidently 

» i   * ^   anViiect onlv to the conditions hold for arbitrary functions ^ ,  «g  , subject; oni.y T.e 

which permit integrations by parts. 
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With the aid of this idtntity we mey show that the Green's 

functions G*1"'  have the very important property of being ahl«, in 

the combination 

C1^  S O*1^ - G-1^  , (9.3.10) 

to express Huygens' principle for a colution 60  of Kq. (9>3.5): 

5^ -/ d^./dV-Jd^G^^öv* .   (9.3.11) 

Here the value at an arbitrary point x of the solution 50  is expressed 

in tormc cf C tuchy data. 

/V'^ö^dS   , (9.3-12) 

on a space-like hypersurface L    having directed svu-f^ce eJ ement dZ^f . 

The prooi' of Eq. (9.3.11) is carried out by chaD^inc the rurface inte^pral 

into a vol une integral with the aid of Gauss' thuorcn, enü tlien using 

Eq. (9-3 9).  Tor x > £ Eq. (9.3.11) becomes 

p future h      p   u        „i-ii      w"   _ik"      it. 
SO1  = J       dV j dV(G iJ FJlk,6«

K - C ^K FkBjtÖ«
J ) 

(9.3.13) 

while for x < 2 it becomes 

^ . r   d^. ^dV(G+lJ,^tk..5.k,•./ik,'Fk.V5oJ5)   , 

(9-3.1U) 

the validity of both forms followinj inmediatcly fron Eos. (9-3.6) and 

(9.3-7b). The extension of the domains of integration arbitrarily far 

into the future and past respectively is permitted because of the "locality* 

^ 



of f ,  and the fact that the Green's functions in each case "cut-off" 

sharply beyond the point x . In the case of x lying on  L Eq. (9.3-11) 

is to be regarded as providing an interpretation of the singularities 

of the G±i,', and their derivatives, regarded as functions of x' , in 

the space-like neighborhood of x . 

It will be noted that Eq. (9.3.7b) was used in the aoove deriva- 

tion, but not Eq. (9.3.7a).  If we therefore take Eq. (9.3-7b) as the 

defining equation for the Green's functions we may infer the validity of 

Eq. (9.3.7a) through the following considerations:  Because the functions 

BO1 satisfy Eq. (9.3-6) and because the Cauchy data (9-3-12) may be 

chosen completely arbitrarily on L , it follows from Eq. (9.3-11) that 

the function G1,5' , which is known as the propagation function for the 

wave operator F.., , also satisfies Eq. (9-3-6), i.e.. 

/Fik" Gk,,J, dl+X" " 0  ' 

as well as the equation 

JG±1S"    F^y     dV   =   0    , 

(9-3.l5a) 

(9.3.15b) 

which follows immediately from Eqs. (9.3.7b) and (9.3.IO).  Equation 

(9.3.7a) is then obtained by splitting the propagation function appearing 

in Eq. (9.3.15a) into its advanced and retarded parts. The kinematics 

of these parts insure that it is only the delta function b^        or its 

derivatives which can make an appearance on the right hand side, while 

dimensional considerations eliminatt the latter. The coefficient of the 

delta function is determined as -1 from the identity 
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jV.j d\. G^ Fab. ü^'J'* .   - G***      , (9.3.16) 

in which integration by parts and interchange of orders of intet^ration 

is permitted in virtue of the conditions (9.3-8)« 

Returning now to Eq.   (9.2.10),   we see that  it may be replaced by 

TF^,  6/ O"3'  d^x«    -    -«Ati        , (9.3.17) 

from which one  immediately obtains 

&A±oi    =    £i GiiJ, A'J'  ^ ' (9,3'l8) 

whenever the  supplementary condition  (9.2.10)  is  satisfied.     If the 

supplementary  condition is not already satisfied by the    5A~ 0      it is 

easily  imposed by first  carrying out a group transformation  (9-2.2)  for 

which the parameters    &6       are given by 

ftt*    =   JVxJ   d4z'  G^3'  Q.Bt  B^.1    , (9.3.19) 

the    0±AB      l«äing the Green's functions for the wave operator     FABl   . 

It is important to check,   however,  that the  solutions   (9.3.18)   in fact 

satisfy the supplementary condition which was used to get them in the 

first place.     This can be done with the aid of an important relation 

+11' between the Green's functions    G" J       and those belonging to the wave 

operator    F ^   .    We note, using Eqs.   (9-3.1),   (9-3-3),   (9-3-5) and the 

symmetry of    s  < <»   ,  that 

/
BJ,

A 
FJ'i ^     =   /'A*1  QiB'   ^       * (9-3.20) 



y 

Therefore 

JVxJ  dV  P/ 0,3.  G^J1    -   J d^xj dV  ^A F^ O*«1 ^ -    A 

(9-3.21) 

But also 

/A./A-F/ oV'^'c" .R'J,A ,   (9.3-22) 

± C" ireen's functions for F^' .  Now, Eqs. (9-3-21) where the 0*,   are the Green's 

and (9.3.22) are both «wave equations" in F/' , having the same inhomo- 

geneous term, - R^ •  The functions satisfying these equations have 

the same kinematical properties and must therefore he identical. That is, 

J\A 
G±iy A " IG±*'  RJ,B' 

A,  '    (9,3*23) 

which is the 

immediately 

relation mentioned.  Using it we get from Eq. (9-3-10) 

t 1 >. J QIAV^'1
^ 

= € J d\'/ dV G*/ «J,3. A,j' > (9-3.2«v) 

which vanishes in virtue of the group invariance of A , thus showing the 

complete self-consistency of the supplementary condition. 

It is convenient at this point to derive also another relation 

similar to (9-3-23). Using Kqs. (9.3.1), (9.3-3) and (9.3.«, « ^ve 

/'U^'i 
d^x« - TPi8' FB.AdV  ,    (9-3.25) 

and hence 
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/A./A- o«' ,/• FB.A - J A./dV <,«• ,,.,. Rk"A - - »', 

(9-3.26) 

But also 

JdV/dVRVG^3'  FB.A    -    -R^    ,     (9.3-27) 

from which It may be inferred that 

JQ**'  PJ.
3

' dUx. -JR^ G**' A    . (9.3-28) 

This relation is useful in the derivation of an important recipro- 

til* 
city theorem involving the Green1 s functions G ^  . We first write 

/Fik.. (G*"^ -G^Vx" 

- -/('lk«-Vi)G*J,,l"d^ 

. - J dV Jd^z (P^ VA - Pk..A ^O**'*"  .  (9-3.29) 

The solution of this equation, taking into account the kinematics of the 

Green,s functions and using (9.3.aÖ)> is 

G^' - G+J,i 

.JdV/A/dW^O*81* G^,k"  - RJ,
BI GJB,A G^")^. A  * 

(9-3.30) 

From this it follows, with the aid of Eq. (9.3.18) and the invariance 

condition (9.2.5), that if A and B are any two group invariants, then 
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. H* ^ 

= o   . (9.3.31) 

That is, the retarded effect of A on B Is equal to the advanced 

effect of B on A , and vice versa. 

This reciprocity theorem allows us to write the Poisson bracket 

of A and B in the following simple form: 

(A^) = DAB - DgA = ^0 \  (6A-B - S^A) 

= j d^xJdV A^C^' B^,    ,   .       (9.3-32) 

in which the propa6ation function appears.  It is to te emphasized that 

the value of the final expression is independent of•variations in the 

propagation function arising from varying choices of the somewhat arbi- 

trary functions P^ , Q^ , R^ • This, of course, is obvious from 

the original definition of the Poisson bracket, but it can also be proved 

directly by studying the transformation properties of the various Green's 

A i 
functions under allowable transformations of the P^^ , Q^ ,  R A » 

and making use of the invariance properties of A and B .  It may be 

mentioned that the functions P^ and QiA can in practice usually be 

chosen in such a way that the matrix F , is symnetric (self-adjoint 

wave operator).  In this circunctance 
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G±iJ' . G+J'i   t (9-3.33) 

and the Poisson teacket identities (9.2.16), (9.2.17), (9.2.18) nay be 

read off immediately from the final expression in (9.3.32). 

A more important consequence of the reciprocity theorem is its 

significance for the theory of the canonical transformation group. The 

existence of such a group is shovn by the following considerations: 

Since, in the limit of infinitesimal e , 

Js,iJt(8B
+ ***  -  BB- ^Vx'  = 0        (9.3.310 

it follows that the quantities O1 + b^O1 - ö^0X    satisfy the dynamical 

equations if the 01 do.  By means of the Poisson bracket, therefore, 

invariants may he used to map solutions of the dynamical equations into 

other solutions. For example, the Invariant B defines the infinitesi- 

mal mapping 

A -> T(B)A = A + e(A,B)  ,   for all A ,   (9.3.35) 

where, in virtue of the reciprocity theorem, the symtol T(B) may be 

expressed in the form 

'T(B) s 1 + 8B    , (9.3.36) 

6B S 8B+- V  '       8M = e(A'B)   '      (9-3'37) - 

the tynbolfl B-* "being viewed here in their evident role as linear 
B 

operators. The mapping (9-3.^5) is expressed in terms of its effect on 

the class of all invariants, since it is only in terras of invariants 

that physically distinct solutions of the dynamical equations may be 

UC 
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characterized.  It is easy to see that such mappings are one-to-one, at  ^ 

least in the neißhhorhood of the identity, and therefore generate a group. 

Prom this fact it follows that the Poisson bracket (9.2.15) satisfies 

not only the identities (9.2.16), (9-2.17), (9.2.18), but also the 

Poisson-Jacobi identity as well; for the Poisson brackets may be mapped 

into the camautators of the  Lie ring associated with the mapping group. 

To see how this comes about we first note that the result, 

T(A)X , of an infinitesimal mapping T(A) performed on an arbitrary in- 

variant X may be regarded in either of two guises:  (l) as an invariant 

which differs slightly from X , or (2) as the same invariant, but 

evaluated with a set of dynamical variables differing slightly — but 

physically — from the original variables.  Therefore, if we consider 

the product of two successive infinitesimal mappings, T(A)  and T(B) , 

we may write, using the first point of view, simply 

T(B) T(A)X - (1 + 8A 
+ 8B + 8B6A)X  *    (9.3-38) 

Using the second point of view, however, and making the functional 

dependence of the invariants A , B , X on the dynamical variables «J 

explicit, we may write 

T(B(0)) T(A[«]) X[<t>l 

=    T(B[0  + 6A0]  -   6A13[«])   X[0   + 6A0] 

=    T(A)  T(B)   X -6&  D X 
AJ 

=    (1 + 5A * 6B * 6A63 - 56A3)X • (9.3.39) 

i 
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Equating the right hand sides of Eqs. (9-3.38) and (9-3.39), we infer, 

from the arbitrariness of X , therefore, 

föA ' V " V " - B (A,B)    •     (9-3-1,0) 

and hence 

OH     [6A ,    [6B,   Bcll ♦   [8B,   [6C,  6A]] ♦   [6C,   »„  tj] 

.6 , (9.3.U1) 
€d[(A,(B,C)) +  (3,(0^))  +  (C,(A,B))] 

vhich, in virtue of the fact that &x = 0 if and only if X = 0 , implies 

(A,(B, O) + (B,(C, A)) + (C,(A, B)) - 0  .   (9-3.^) 

This identity may also be proved urine üq- (9.3-32), by wcrkiob directly 

with the Green's functions (DeWitt, 196l). 

In evaluating Poissou brackets by means of Eq. (9.3-32) a possible 

source of ambiguity at first sifcht appears to exist.  Heretofore, in 

referring to group invariants, we have always had in miud explicit 

functional expressions involving the 01 . Actually, invariants are de- 

fined only modulo the dynamical equations.  It is straightforward to show, 

however, that this freedom leaves the value of the Poisson bracket un- 

affected.  Let us, for example, replace B by 

B« - 3 + T fi 3^ dUx  , (9-3.1*3) 

where the f1 are arbitrary coefficients.  [The group invariance of the 

second term follows from Eq. (9-3-1) together with the dynamical equations.] 

We have 



. (A, B') - (A, B) ♦/4%«/**«,/A%rf' A,i GiJ, S,J'k" ^  ' 

(9.3.UU) 

in vbich terms in S   have been dropped after the variational differ- 

entiations have hecn performed.  In virtue of Eqs. (9«3'3), (9«3-15h) 

and (9.3.23), however, this becomes 

(A, B«) - (A, B) -j d^jVx''Jd^JVz> A^V^VB« ^  , 

(9-3-^5) 

which reduces simply to (A, B) in view of the invarjance of A . 

All of the preceding work has been carried out in the semi- 

classical approximation with all quantities being treated as freely 

eoBnitabla c-nunberB. We may here briefly indicate some of the problems 

which arise in the rigorous theory. In the first place, the use of 

quantities which are conmutable in lowest approximation restricts the 

application of the theory to systems satisfying Bose statistics.  In the 

semi-classical approximation it is actually not difficult to extend the 

theory to include Fermi systems as well. The details of this extension 

are outlined in Appendix A at the end of the chapter.  It is only neces- 

sary to introduce anticommuting as well as commuting "c-numbers." Beyond 

that^ however, the problems become difficult.  The quantities in the 

rigorous theory do not exactly commute or anticommute, and the order of 

factors must be taken into detailed account.  It is no longer clear to 

what extent the formalism is determined by physics alone and to what 

extent it is determined by purely mathematical exigencies (not that one 

expects the two to be separable in the end, of course). The difficulties 
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are Increased by the fact that the Green's functions are themselves 

q-numbers in all except completely trivial linear theories. In the case 

of systems possessing Infinite dimensional invariance groups the way out 

of these difficulties is conpletely unknown except when the theory is 

nearly linear (e.g., quant'an electrodynamics). When infinite dimensional 

invariance groups are absent it is possible to give some indication as 

to how one may proceed. In this case comnutation relations may be written 

directly for the 0  themselves, namely 

[•*, o-5'] i G (9.3.^) 

The problem which then arises is that of defininß the "operator-propagator" 

G ^      in such a way that it can really be a conanutator.     In particular, 

it must be consistent with the Poisson-Jacobi identity as veil as with 

the dynamical equations.    Its consistency with the latter provides a 

possible clue.    Suppose the dynamical equations    S  .  = 0    have been 

written with their factors in some given order.    Then by taking the 

commutator of the dynamical equations with    G0    ,  we obtain 

o-Es^,«-3']    =   i Ts^,. • G1""-3' dSc    , (9.3-^7) 

where the dot signifies that the propagation function is to be inserted 

k" as a replacement for 6<)   in all the places in which it occurs in the 

variation 6S .  .  This then suggests that the Green's functions them- 

selves be defined by 

/ ^ik"     G d x 
y (9-3.W) 

It is not obvious,  however, what conditions the original   structure 
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S,    has to satisfy in order that Green*s functions defined in this way 

satisfy the necessary reciprocity relations (9«3.33) «"w*, finally, 

that the Poisson-jacohi identity hold.     It nay be possible, neverthe- 

less to build up a self-consistency scheme, by successive approxima- 

tions perhaps,   to answer this question.     Incidentally,  there is no 

a priori reason   o insist that S>1 should be the variational deri- 

vative of some actual action operator.     Its full expression may 

require the addition of some small (proportional to ft2)   "non-classical" 

terms.     Its complete determination may also depend on a number of 

other considerations,   for example, on the requirement that all 

criteria adopted he  invariant under transformations which replace the 

O1, as primary dynamical variables, hy arbitrary local functions of 

themselves. 

When infinite dimensional invariance groups are present it 

may be necessary first to introduce seme  "preferred"  invariant 

dynamical variables   (determined in the case of general relativity, 

for example,  by an intrinsic coordinate  system based either on the 

geometry of space-time itself or on some additional physical system) 

which satisfy a set of invariant dynamical equations and for which a 

commutator like (9.3."t6)  can be written.     On the other hand,  it might 

prove possible to deal with the original dynamical variables as if 

they satisfied the commutation relation {9-3'^), a8 lonS as a11 

final expressions involve only group invariants.    The commutator of 

two invariants A and B would then take the form 

[A,   B]    -    i/dSc [dSt« A,i • 0^'   • B,J«    ' (9-3.*9) 

^ 



the condition for invariance itself becoming 

JA'i * ^ , d x ■ 0. 
A 

| 

!■ 

In Eq. {9.3.^9) the  pair of dots signify that the propagation function 

is first to he inserted as a replacement for 50J in all the places in 

which it occurs in the variation 6B and that the resulting "product" 

is then to be inserted as a replacement for 50 in the variation 6A, 

or, alternatively, that the process of insertion is first performed 

in &A and then in 6B. The equivalence of the two procedures follows 

from familiar properties of commutator brackets, together with the 

assumption that G1"3' is itself actually a conmutator.  Whether j 

complete consistency of the quantum theory of geometry, in particular, 

can be established along these lines remains to be seen. 

We conclude this section by showing how the arguments and 

methods thus far introduced can be used to derive the generator of 

infinitesimal displacements in space-time.  It is convenient for this 

purpose to work with an action functional which is formally invariant 

under the group of general transformations of the coodinates x^, even 

though the system in question may not really be invariant under this 

group.  Such an action functional can always be constructed simply by 

starting with a standard "sinplest" form and performing an arbitrary 

coordinate traueformation.  Metric components g^ will then make an 

appearance as explicit functions of the x*1.  In this way nonrelati- 

vistic and Lorentz invariant theories, as well as generally covariant 
11 

theories with fixed gravitational fteld^ can all be treated at once. 

It will become apparent in Section 7, furthermore, that the method 
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also covers the fully relativlstic situation in which the gravitational 

field itself is given dynamical properties.     In this case it is only 

necessary to use intrinsic coordinates in place of the xr. 

An infinitesimal displacement öxl1 of the coordinate mesh 

corresponds to the coordinate transformation x'^ ■ X    - 63r.    Under 

this transformation the functional form of the action suffers an 

explicit change of amount 

6S • |/»uv S v d x (9.3.51) 

where 1MV is the stress-energy density of the system and 8g^v is the 

change which the mesh displacement induces in the explicit metric g^v: 

2 6S '/%, 

56u V        11. V      V'\X 

(9.3.52) 

(9.3.53) 

Here the dot denotes the covariant derivative with respect to the 

metric K . In order to insure convergence of the integral (9,3.51), 

6x^ will be required to vanish outside of a finite but otherwise 

arbitrary region cf space-time. 

Since the action functional is formally coordinate invariant 

the change (9.3.51) will be exactly cancelled by a variation in the 

♦ corresponding to the same coordinate transformation: x' = x-  5x . 

This fact Is of great importance, since it means that the change 

(9.3.51) can also be computed by taking the negative of the variation 

induced in S by replacing the 0 and their derivatives by their 

"displaced" values.  It is to be noted, however, that when the 
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dynamical equations are satisfied this latter variation vanishes on 

account of the stationary action principle. This means that expression 

(9.3.51) itself has vanishing value, and hence 

0 = BS - j^Sx^dSc - -Jr^bx^dSc , (9.3.5M 

which, in view of the arbitrariness of b^ ,  implies 

T^   - 0 (9.3.55) 
.v 

In spite of the fact that expression (9.3.51) has vanishing, value 

its explicit form is significant, and can be viewed just as if it 

represented a real change in the physical system. The vanishing of 

5S simply means that the retarded and advanced effects which it pro- 

duces will be identical. 

Let us consider an arbitrary local tensor quantity construct- 

ed out of the O1 and their derivatives, the components of which may 

be imagined as arranged in a  1-column array .  Let us further 

suppose that 0 is a group invariant of the system. The  change in 

* produced by the change BS in the action will vanish in regions 

where 6x^ vanishes and will elsewhere thke the form 

6+* - «T« - 0.^  + V W^.v ,      (9.3-56) 

«orresponding to the alteration in the coordinate mesh with respect to 

which « is viewed. Here the D v are generators of the matrix repre- 

sentation of the linear group to which « corresponds; they satisfy 

the conmutation relations 

[D (T , D T] - ST D CT - 5 V"  .       (9.3.57) 
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We also have, however, 
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where 6(2,2') is the step function: 

( 1  when z > z• 

eCz^z') 

(9.3.58) 

(9.3.59) 

^0  when z < z' 

Because of the "locality" of * and t%V%  the variational derivatives 

appearing in (9.3.58) will consist of linear combinations of the delta 

functions 6{x,z) and BU^z«) and their derivatives, x beinc the point 

at which <i> is evaluated. This means that i» is almost permitted to 

replace the step functions e(z,,z), o(z,z») by 0(x,,x), el*,**) 

respectively. In fact this replacement can be made provided extra 

terms involving the derivatives of the step functions are aadod as 

needed in order to account for the effect of the aifcTetwutietod delta 

function. Lumping these extra terms collectively into the symbol A 0- 

we may therefore write 

(5 

6* 4) 

f 

1 ^ 

future 
^ 6x .  .d\«) +^ 

(i' • v' 

-(*, / V^* 6x   , A**')  + AJ  , (9.3.60) 

^ 



where £ Is an arbitrary space-like hypersurface through x.  Perform- 

ing an integration by parts and making use of Eq. (9.3«55), we 

finally obtain 

%&^ + V^-v = ^>l)+A* ' (9-3.61) 

f)  s -J?y,b^,  "v« . (9- -62) 

It is seen that an infinitesimal displacement can be effected 

on a group invariant * by means of a simple Poisson bracket with an 

infinitesimal generator %   which is the nearest thing to a 

Hamiltonian appearing in the present formalism only if Afc vanishes. 

A* will vanish or not depending on the effect of the singularities 

possessed by the products of the propagation function with derivatives 

of the step function. Generally speaking, in a theory for which the 

dynamical equations are of the second differential order in the 0  , 

A* will vanish if * depends only on the «P1 but not on their derivatives. 

That A* will not generally vanish when * depends on the derivatives 

of ■J>i is then easily seen by taking derivatives of Eq. (9-3 ''l) atld 

reir-BmhsrJng that % itself depends on x through its deneii^r.i- on E. 

TMs, howcer, in turn implies that At may in special cases vanish 

for all 0, namely, if the displacement Sx*1 can be chosen in such a 

1? way that X becomes independent of E.-  - In such casts ve may speak 

of a "true Hamiltonian" for the system.  It is to be erphoaized once 

again, however, that although its use is often a convenience, the 

infinitesimal displacement generator is not essential to the 

quantization program. 
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(9.I*)  The free particle and the relatlvlstlc clock. 

In this section we apply the Green" s function techniques to 

two simple examples:  the nonrelativistic free particle and the 

relativistic clock. The first provides a familiar introduction to 

method while the second is of fuadeunental importance in the theory 

of measurement of the geometry of space-time. 

The action functional of the free particle may be taken in 

the standard form 

- 1  / .2 
2 J - 

dt (^•l) 

where m is the mass and x = (x. . x,.. X-) the position vector cf the 

particle, and where the dot denotes differentiation with respect to 

the time t. The variational derivatives 

8S/8X.  ■ - m xi , 

i • 

62S/6x1 ÖXj, =    -m6iJ6(t.t«) , 

lead to the dynamical equations 

-nx = 0 

(9.^3) 

(S».^1*) 

: 

and to the equation for the Green's functions 

-m G" 
ij« 

- 61J B(t.t') 

The solutions of Eq.   (g»^«?)  are readily foxond to be 

(9A.5) 
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o* , - «■löi1 o{t*.t)  (f-t) \ 
ij       »J J     (9.^.6) 

0" ,  - m"1 6^ e(t.f) (t-t») J 

eCt-t«) beine the step function for the present case. From this the 

fundamental Poisson bracket immediately follows: 

1*1»  V* = ^y    = -^(t-f) ,      (9^.7) 

leading to the uncertainity relation 

^ ÄXJt  - m"1 61J It-t«I . (9.^.8) 

The  physical interpretation of this uncertainty relation is 

immediately apparent. A measurement of xi  with accuracy A)^ leads 

to an uncertainty in momentum of order l/Ax. and hence to an un- 

certainty in the velocity component jLof order m" /Ax^  This lends 

to a subsequent position uncertainty which increases with elapsed 

time^ namely: Ax,,, ~(m" /£x..)\t-t\\    The other components of position 

remain unaffected. 

The entire quantum theory of the free particle can be ba&ed 

on the Poiseon bracket (9.4.7) taken in the form of the cocsratator. 

The development follows completely familiar lines.  V.'e confine 

ourselves here to the derivation of the generator of infinitesimal 

displacements in time. The essential arguments have already been 

given at the end of the preceding section.  Remembering that the 

change in the explicit form of the action which generates the dis- 

placement 5t is equal to the nccative of the variation in the action 

due to the variation in x itself under this displacement we have 

5? 



and hence 

((x, -W^»2 at» dt«)) 
56t = 6S - )•   ^ (-(x, H)6t ,   (9^.10) 

(<* -^/j'2^' dt,)) 

H = I m j2 • (9-1*'!!) 

The final form is obtained through integration by parts and use of 

Eq. (9.1+.1+). The possible extra term Ax tcf. Eq.(9»3-6oH vanishes 

in the present case since G , ©(t-t1) = G±y  BCt-t') = 0- 

Furthermore, since the Hamiltoaxan H is constant in time, the equation 

f = (f, H) (9.U-12) 

holds for quite general dynamical variables f. 

The theory of the relativistic free particle can be develop- 

ed in a quite similar fashion, starting from the action functional 

1 

S = -mj   (l-iP)2 dt  . (9^-13) 

One obtains the equation for the Green's functions 

-m(l-i2)-|   [^Ml-x2)-1 V^V    =    -»1J  ^^  '    (9'^) 

which leads to the Poisson bracket 

(x,, xJt)  = G.j. - -md-X2)2 (^j - x^Kt-f).    (9.^15) 

In this form,  however, the formalism is unsuitable for extension 

and application to the measurement problem in general relativity. 
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Since the dynamical equations derived from the action {9^-^)  are 

Lorentz covariant, the formaliam Itself should be made Lorentz 

covariant. What is needed is a manifestly Lorentz covariant Poisson 

bracket instead of one whidi, like (9>.15), singles out the time for 

special treatment. Ft>r this purpose it is necessary to introduce the 

proper time. Proper time, however, must be reckoned starting from 

some zero point which the particle by itself is unable to provide. 

For example, it is not satisfactory to reckon proper tine from the 

moment (i.e., space time event) when one of the spatial coordinates 

of the particle has a given value, or when the ordinary tine itself 

has a given value. For such a reckoning would not treat all the 

space-time coordinates of the particle equally, and the resulting 

formalism would not, in fact, be manifestly covariant.  In order to 

achieve a manirestly covariant formalism which is suitable for the 

measurement problem, one must have available an intrinsic proper 

time, and this can only be provided by a physical clock which 

"sits on" the particle. 

Vor  simplicity the clock itself may be regarded es being 

thA particle.  If the tem "particle" is to remain applicable this 

means that the physical dimensions of the clock must be small, or 

else that the clock coordinates must be "internal" coordinates, un- 

related to space-time. We do not concern oursrl/es here with the 

question of the practical realizability of smh clocks. We must, 

however, inquire into the nature of the action functionals which 

describe them.  For the skke of orientation it is convenient at 

this point to adopt the conventional Lagrangian - Hamiltonian view- 

point, although in the final development it will be dispensed with. 



The internal dynamics of  the clock will, in the  rest frame, 

be describable by a Lagragian i(q> 4) depending on a set of internal 

coordinates qa and their time derivatives. Alternatively, the 

description may be made in terms of a Bamlltonian 

m • a 
Pft  -  öi/öq

a  ,  (9.^.16) 

which is expressible as a function of q's and p's after the second 

of Eqs. (9.U.16) has been solved for the q's. The symbol m is used 

here for the Hamiltonion, since its value will be simply the rest 

mass of the clock (assuming proper choice of the energy zero point). 

In passing now to an arbitrary Inertial frame it is only necessary 

to note that time derivatives become proper time derivatives. 

Heferring back to coordinate time, therefore, we may write the 

Lagranglan in a general frame in the form 

1 

L - i(q, q(l-x2)2 )(1-Xif) 

1       1 
2N2 W, „2X2 (9-4.17) 

The momenta p remain unchanged In value, while the momenta conjugate 

to the x become 

}i     =  fc/a^  - [pQq
a(l-x2)2  - jj^l-x2) 

-1 1 
2^2 

m ^(1-i2)8 • (9^.18) 

The Hamiltonian therefore becomes 

p • x + p q 
JM      ß 

x ♦ m(l-^2)2 (m2 + p2)2 , (9.U-19) 
4» 
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Just as for a particle without any internal degrees of freedom. 

All the internal variables are contained in the mass m. 

Itany different mechanical devices (including atoms and 

molecules!) are adaptable for use as clocks. In the majority of 

cases these are essentially conservative nniltiply periodic systems, 

and it will suffice to confine our attention to them. The des- 

cription of multiply periodic systems is conveniently carried out 

with the aid of the classical angle and action variables.  For 

purposes of measuring \ime  only one of the angle variables is 

really necessary. Therefore it suffices to consider clocks hav- 

ing only one degree of freedom, with one action variable J and one 

angle variable e« Other degrees of freedom may actually be present, 

but if we agree never to disturb them by measurements, the action 

variables associated with them (which determine the internal 

energy and hence the rest mass) will remain constant and may be 

ignored.  The rest mass will then be a function of the sL ngle 

variable J, and the angular frequency of the internal motion will 

be given by 

tu =  än/ÖJ . (9-l+-20) 

The Hamiltonian equations for the clock become 

o , x ■ p(iir + g )  * P 

-L <    (g.^D 

m(m + p )  ü) , J = O 
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The internal dynamical quantity oT^Ö will be recognized as 

the intrinBic proper time. We nay now eeH  such queetlons as: 

Where will the clock be when the intrinsic proper time has the 

numerical value T, and what will the value of the coordioate time 

be at that instant? With the aid of the Haailtonian equations it 

is easy to see that the arswers to these questions are given 

respectively by 

-1_ -1 {9'^'22) J(T) - j^ + m" p(T.«" e)  , 

1 

t(T) - t + ■•1(BV)*(T-ar1e) »     (9-1*-23) 
m 

In terms of the values of the dynamical variables x, p, e at an 

arbitrary time t.  Poisson brackets of X(T) and t(-r) with each 

other may therefore be constructed in the conventional canonical 

manner; it is only necessary to bear in mind that m and co are 

functions of J. A straightforward computation leads to the com- 

pletely covariaat result 

(^(T), XV(T.) ) . -m-V^i^T-T.) ,    (9.^.^) 

vriaere  the indices on the x. have oeen raised, in accord with the 

introduction of the Minkowski metric (^V)  ■ diag (-1,1,1,1) and 

>rtiere x0(T) H t(T). 

The dots are now used to denote differentiation with respect 

to the proper time.  It will be observed that Eq. (9.^.2^*)  is con- 

sistent with the identity i^x » -1. 
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The covariant Poisson bx-acket above was obtained with non- 

covariant methods. We shall next see how the same result can be 

obtained with Green's functions within the framework of a manifestly 

covariant formalism. The sinplest covariant description of the rela- 

tivistic clock is provided by the action functional 
1 

S = / fje- m(-x2)2ldt , (9^.25) 

13 where t is here a completely arbitrary parameter,  ■' differentiation 

with respect to which is denoted by the dot.   (Note the varying uses of 

the dot!), and where x2 is an abbreviation for &k.    The variational 

derivatives 
1 

5S/8J    a   e - üX-X
2
)
2

    =    0 , (9.t».26) 

8S/8e    =    - J    -    0      , (9.^.27) 

6S/B^ =    -d(m v^/dt    = m v^ = 0 , (9.^.28) 

where -i 

^    =   ^(-i2)"2,    ^--1,        (9.U.29) 

yield dynamical equations equivalent to those of (9 •^•21). However, 

the second variational derivatives 
1 

B^/SJ 6J«     s    -   (&VOJ)(-X
2
)
2
 8(t,t')     , 

B^/ÖJ 89'     s    Ö 8(t,tf)/8t  ( 

b^/bj bJ1*  n    üü v^ ä 8(t,t')/8t, 

82S/8e 88»     s    0, 

2 a« 6 s/&e 8x1^    3    0, 

b^/by^ 8xv,
S    -   dM-i2)'2 P       d 6(t,f)/ät]/ät 

>      (9.^-30) 

2 
/&9 bf    s    0, 

1 

where 

P =    n      + v V    , P   vv    =   0 , (9.^.31) 
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do not in the present case lead innediately to equations for the 

Green» s functions of the system.    This is because the action (9.^25) 

possesses an infinite dimensional invariance group,  namely    that 

associated with the ar1 itrariness in the parameter t.    Under the in- 

finitesimal parametar transformati-n t«     = t -  8t the dynamical 

variatles suffer the changes 

5J    =    J6t=0,1 A 

Be    =    Ö6t    =    co(-3c2)\6t,    / (9.^.32) 

o^ =   ä^at   = ^(-x2)1 Bt,y. 
When the dj-namical equations are satisfied the condition that a given 

dynamical quantity A be parameter invariant is evidently 

6A. S**       = o (9.^.33) 

Tlie action functional itself is, of course, parameter invariant. 

In order to obtain definite solutions to the equations for the 

small disturbances 5*1, 8*6, S*^ induced in the system hy the addition 

of an infinitesimal parameter invariant «A to the a.ction{9.k.2 ),  it 

is necessary to impose a supplementary condition.  The one which is 

convenient here is 

If this condition is not already satisfied it can easily be imposed by 

first carrying out an infinitesimal parameter transformation (9.^32) 

for which ^ . 

6t = (-i2)"2/' v^B^dt. (9.^35) 

When it is satisfied it is easily seen fron Eqs.(9-^«30) and((9.Ml) 

that 
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6*1 .± 6A   .   n± 
JJ»   53»    0 JO*   ^ 

5%  -   ;/>„.   »♦»*„.  ^«V"   5.) «•.^^•3« 

.V.   /(o*,.   S.*o*e.   ^o*"'   A.)«. 

where the G1 are the Green's functions for the wave operator 

^JJ«  PJÖ«  FJv^ 

'eJ1 ^'ee» pev« 

«HJ« ^e» F^v«y 

i 
.(V^)(-x2)26(t,t•)     äB(t,t»)/öt 

) 
-aB(t,t»)/ät 

\-ü3 v     ö SC^tO/ät 

0 

0 0 ((9«^-37) 
JL 

0        -mri^öU-i2)   2ÖB(t,t»)/ötj/dtj . 

The computation of the Green's functions is straightforward. One 

.± H' ± u« 
easily finds, for example, that the functions 0 JJ, , G j >  G Q    * 

G* , vanish. The Poisson bracket of two invariants, A and B 

therefore reduces to 

(A, B,  - /«/ «• t^. i.. ^ 0^. g. * I ^ g. 

^ BA -ti  6B  . 6A  jiv' 5B x 

6^  
G Be«  S.^1     6xv 

(9^-38) 

We postpone evaluating the remaining Green's functions until after 

we have introduced a description in terms of the proper time. First 

it is important to check that the solutions (9.•♦.So) satisfy 
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the supplementary condition (9-1^310- **<« the equations 

\ 

-8(t,t') .jiw^ G^e. + V G±e'V + F^ Gitl e«5 dt" ^ 

--^V^  ' 
o 'ß**r GVe' + W (;±e"o' + V G'V G^ dt" / 

1 \ 
= - a) v Ö o* ,/at - m d [(-x2)2 d G^./dtVdt, > 

V1 -/(^^V^w^^v^^^ 

it follows that 

/ 

v  öQ*. / at - »o^t, t«) , 
ix 6' 

• / at - v1'' G*(t, t«), 
v ä 

.dtiv" 

whore the functions G~ satisfy 

1 

- m ö[(-i2)2 G^t, t«)]/öt = - 8(t, f) 

(9^-39) 

{9.k.ko) 

{9.k.kL) 

We therefore have 

r^ = eJ G^t,^) (co- |.+ S  ^v.) df ,  (9. ̂.1+2) 

which vanishes on account of the invariance condition (9.1*-33)- 

Consider now an arbitrary local function f of the dyna- 

mical variables and their t- derivatives.  It is important to make 

a distinction between the quantity f, taken at an arbitrary value 

of t, and the same quantity taken at that value of t for which the 
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intrinsic proper time uT e bas the numerical value T. For the 

mcmeat we shall denote the latter quantity by f . The relation 

between t    and f is 
T 

trmj (-i^^T-üT^e) f dt (9.^3) 

Using the dynamical equations it is straightforward to show that 

_1 

af^är = [(-i2)'2f]T . (9.U.M0 

Next, let us Compute the disturbances in f due to the addition of 

eA to the action. Making use of the supplementary condition (9.^.3^) 

±     ■*■ 
and the equations satisfied by 5 J and 5"0, as determined by the 

variational derivatives (9.4.30), we find, from Eq. (9.4.1+3), 

B*^ = {b±t)r + (äf^ör) w
_1l - (5±e)T + T(au.y'äJ)(B

:tJ)T] 

_1 

+ e[(-x2) 2 f]T » 
1[(6A/5J)T + T(aa/aJ)(BA/8e)T] .  (9.4.45) 

With the aid of this result we may reformulate the Poisson bracket 

of two invariants, A and B, in terms of intrinsic proper time. We 

first set t formally equal to T, replace Q by our wherever it occurs 

in the expressions for A and 3, and regard A and B as explicit 

functionals of (x ) and J . Then, noting that the second line of 

(9.4.45) disappears in the difference 8 f - S"f which occurs 

in the definition of the Poisson bracket, we have 

(A,B)  = /drJdT« [- <* 
Sj GJG 

J**    -1 BB _ 6A ^ -•I,,  B3 

+ M {fV- ,M       v« -1 

B^ 

v^co^C 

9' 
v  O) 

u -1^    v« -1 
V CO  C .V  (U 

W 
u -1 dti.   v' -IvBB v« -1 .öcu 
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where the subscripts T have now heen dropped. 

The eqiiations for the Green's functions take the following 

forms in terms of the proper time: 

**T.A* - -ÖG±
J«./*

T =-6(T- ^ '• eu' 

(öO/öJ) Q* , ♦ a G
1
«,./^ -  0 , je 

The solutions of these equations are 

i 
;   (9A. ^7) 
\ 

eJ* G Je«   =   * 
9(+(T   -    T«)    )    , 

/ 
G±     ,      =     *   (öoy'öj)   e(*   (T  -   T«)   )(T  -T«)   , / 

G    G» 

.iUv' 

im"1   (ÜV11   »{»   (T   -    T«)    )(T   -    T«)    ,       \ 

I 
I 

0—        =     » m"-1   ^v   0(»   (T   -T«)   )(T   -   T»)   , / 

and hence, finally. 

(A,   B)    -   / drj dr» 
5A   ^,     -1 6B 6A      u    -1 &B 
-—   V CD  ■    -            »       CO Frt 

L5J - UV »   U oj" 5^ ^ 

5A ptiv I 

8^ Sx' 

-1   / l\   BA   rPV  6B 
m      (T -  T») — P^    r—v,    J     . 

(9.iv.i+8) 

(9-^1*9) 

In particular. 

(^, xv ) = -m'1 f  (T - T») , (9.U.5O) 

in agreement with Eq. (9.4.2^). 
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In their application to the relativistlc clock the Green's 

function techniques are evidently open to the criticism of beinc 

unduly ccanplicated. The particular method which this simple 

example illustrates, however, is of great importance in the quan- 

tization program of general relativity and Justifies the attention 

given to it. The process of passing from general to intrinsic 

coordinates will he encountered again in Section 6 and, in fact, 

will almost certainly be characteristic of any other covariant 

quantization procedure. It should also be pointed out that, by 

using the covariant procedure in the present example, we have 

gained somewhat more than the mere Poisson bracket (9.U.50). 

For example, the generator of infinitesimal displacements in 

proper time is readily derived from the action i9.l4-.25). 

A displacement in proper, time is described by a variation 

x^Bt in the space-time coordinates of the clock, with no varia- 

tion in e or J.  [Thus the variations (9>-32) do not describe a 

proper time displacement; they correspond merely to a parameter 

transformation, in which the change in 0 effects a change in the 

correspondence between t and the intrinsic proper time which 

precisely cancels the proper time displacement effected by irbt. ] 

Remembering again the general rule that the explicit change 6S 

in the action needed to effect the desired change in x^ is equal 

to the negative of the variation in the action due to an explicit 

change in x^ of the desired amount, we have 

1 
r  .p. 

&s = - fmC-x2)'2 x^ d^Bt) «  m 6T dr,    (9^.51) 
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in which t is set equal to the proper tine in the second integral. 

Using the form (9.U.J49) for the Foisson bracket, therefore, we 

have 

(^,  fmaTtdT») 

6T = 6V = I      .       ^ = - (^, m) 6T ,     (9^.52) 

in which the usual integration by parts has been performed and the 

T-independence of m has been used. Dropping the 8T, we have 

x^ (A m)  = v^ , (9.^-53) 

and similarly 

j = - (J, m) = Oo (9'^5^) 

Equations (9.k.53) and [S.k.Sh) are verified at one by explicit 

use of (9'1^1*9)° 

The role of the rest mass as the generator of proper time 

displacements reflects its role as the variable conjugate to the 

intrinsic proper time m'^.  In the quantum theory this conjugate 

relationship has the consequence that a measurement of proper time 

with an accuracy AT implies an uncertainty in the rest mass of 

order 1/AT.  Since mass is always positive this implies that the 

"classical" or "average" value of the clock's mass must be at 

least as big as 1/AT in order that the measurement actually be 

possible. It should be pointed out in this connection that the 

angle variable, and hence the intrinsic proper time itself, has 



strict validity as a concept only in the classical limit. It is 

generally impossible, in any given case, to construct for a peri- 

odic system, an Hermitian operator which can be strictly regarded 

as a quantum proper time variable conjugate to the Hsmiltonian 

of the rest frame; this is a consequence of the one-sided (posi- 

tive) and discrete character of the rest-mass spectrum.  Our 

theory of the relativistic clock, therefore, like our treatment 

of the elastic medium in the following sections, is essentially 

phenomenological. Nevertheless, the above estimate of the 

miniuum mass reqiired to effect a proper time measurement of 

given accuracy has a basic validity, as has been confirmed in 
1I4. 

studies of specific clock models by Salecker (1957)» 
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(9.5) The stiff elaatlc medium. 

In order to use an elastic medium as a coordinate framework 

we must know something about its dynamical properties, so that we 

may be able to Judge the accuracy of measurements made with its 

aid.  Since the properties which dctermixje this accuracy are 

mainly nonrelativistic ones, we look first at the nonrelativistic 

theory. This will then be followed by a description of the log- 

ical extension of the theory to the relativistlc domain. 

In the so-callel "Lagrangia-a" scbeuB of coordinates the 

constituent partidet of tue medlvm are Identified by a set of 

three labels ua, a = 1, 2, 3- The ua provide what is generally 

a curvilinearsystem of coordinates which changes with time ac- 

cording to the motion of the medium. Its "shape" is described 

with reference to a Cartesian inertial frame of so-called 

"Eulerian" coordinates x^ 1 - 1, 2, 3- The relation between the 

Lagrangian and Eulerian coordinates is expressed by a set of three 

functions 3^ (t, u) depending on the time t as well as the labels 

^ = (u1, u2, u3). 

Characteristic properties of the medium may be expres- 

sed in either the Lagrangian or the Eulerian system.  For 

example, if f is a density in the Eulerian system and f0 is the 

corresponding density in the Lagrangian system, the relation 

between the two is given by 

»- UK . <9•5•1, 

where c)(u)/ö(x) is the Jacobian of the tr?nsformation from one 
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system to the oebwr. There are two principal densities which char- 

acterize an elastic medium:  the mass density and the internal 

energy density, which we shall denote by p0 and w0 respectively. 

The mass density pn may vary from point to point in the medium, 

but will be otherwise constant; it depends, therefore, only on 

JJ. The constancy in time follows from the law of conservation 

of mass, which may be expressed in the form 

P0 - 0 , (9.5.2) 

the dot denoting differentiation with respect to the time. More 

precisely, the dot will be used to denote partial time differeni- 

ation when the quantity over which it stands is regarded as a 

function of t and u. The same quantity may also b5 regarded as 

a function of t and x s (x^, x , x,), however, and in this case 

partial time dlffernntiation will be denoted by a subscript t. 

The relation between the two kinds of derivatives, for an arbitrary 

quantity q, is 

4 = % + %!*!    » (9.5.3) 

vi = ^ = öx^t, u)/ä-  , (9.5.»0 

the comma followed by an index denoting differentiation with re- 

spect to x.. From this relation together with the law of dif- 

ferentiation of Jacobians, the mass conservation law in the 

Eulerian system is readily derived: 

Pt + (P^),! " 0 • (9.5.5) 

The internal energy density w , like p , may vary from 

I 
I 

i 
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point to point in the medium. Its variations, however, unlike 

those of p-, are not "pre-set" but depend in some measure at least 

on the dynamical situation. It will be assumed that the spatial 

dependence of w0 can be cleanly separated into two well defined 

parts, (1) an explicit dependence on y, reflecting a possible 

spatial variation in the basic constitution of the medium, and 

(2) an explicit dependence on the shape of the Lagrangian coor- 

dinate mesh at the point u. The shape of the Lagrangian mesh 

is described by the Lagrangian metric 

xx     . (9«5-6) 
'ab " xi*a xi,b  » 

(Here the comma followed by a lower case Latin index from the 

beginnine of the alphabet denotes differentiation with respect 

to a u.) The dependence of w0 on the time enters only through 

its dependence on 7^. 

The use of pn and w constitutes a phenomenological des- 

cription of the medium, the validity of which depends on the 

adequacy with which gross properties of its actual atomic, col- 

loidal or granular structure can be treated by means of instan- 

taneous averages. The phenomenological description has been well 

established, on the nonrelativistic level, for many experimentally 

analyzed solid materials. However, our program here, being of a 

conceptual nature, does not hang on actual laboratory observations, 

and we shall, in fact, assume the validity of the phenomenoloüical 

description in the relativistic domain as well. Furthermore, in 

the relativistic extension of the theory we shall assume that we 
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can continue to maintain a sharp distinction between P0 and vQ. 

The quantity p0 will be regarded as the rest energy density due 

to the masses of the constituent particles wfcile w0 is regarded 

as the rest energy density arising from internal stresses, i.e., 

interactions between the particles. 

The form of the action functional for the elastic medium 

may be inferred from nonrelatlvlstic particle mechanics. In the 

Lagrangian system it is given by 

S |dt Jd3y (| PQX^ - w0)   . (9.5.7) 

The dynamical equations are 

BS/6x^    S    . p^ -   (ta\,a),b    -    0, 

where 

.ab 
•2 'V^ab 

(9.5.8) 

(9.5.9) 

1 

In the Eulerian system these equations take the form 

" p  (vit + vi»j VJ)   -  biJ.J    =    0    * (9-5.10) 

b{u) tab 
'ij    "   ^(fT *!»• J'b    ,       (9-5.11) 

which identifies t  as the internal stress density, giving rise to 

a body force density of amount 

fi = 'U»J 
(9-5.12) 

Tills identification is also confirmed through a consideration of 

the work done by this force on the constituent particles of the 

] 
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medium under an infinitesimal displacement bx^  : 

6w = jfi8x1 d
3x - J^ij^i^ *h.  - /ta\,a9xi,b d3^ 

--/$0 B7abd3u - -J6w0d3u . (9.5.13) 

The energy supplied to perform this work must come from the medium 

itself and therefore showi up as a loss in the internal energy. 

In combination with the mass conservation law, Eq. (90.10) 

may be re-expressed in the form of a momentum conservation law: 

(pVt + Tu»j  " 0 • 

TiJ ■ pvivJ + tiJ 

T  is the stress-momentum-flux density. With the aid of the 
1J 

(9.5.15) 

identity 

*i4v..   t. wo = " ■§^11 Vi*J "U  ' 
(9.5-16) 

Eqs.(9.5.5) and (9.5.1^) may also be combined into a law of energy 

conservat ion: 

(ipv^ + w^Mlpv.v.v. +wJ+viti.))jJ = 0  (9-5.17) 

The changes in the dynamical variables x^^ under the 

addition of an infinitesimal eA to the action (9'5«8) satisfy the 

equation 

„± .'        / aoca oX„      \ p06    xi + (c        xiiax^cB «4,d) 

-   CtabB\,a),b    "    - €5A/6xi    ' 
(9.5.18) 
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abed 3 * f*0 -    .        (9-5.19) 
d ''ab^cd 

There are no infinite dimensional Invariance groups for this 

system, and hence the Poisson bracket may be written at once in 

the form 

vhere G , is the propagation function formed from Green's functions 
A J 

satisfying the equation 

..±     , abed      ,,±    \    r+^r*    }      » -5 . (9-5'2l) 
'  PoG ij« + (C   H****,^ kj^d^b " (t G ij».a^b   öiJ« • ^ 

The aaoerator of infinitesimal displacements in time may 

be obtained in the now familiar manner. The pertinent variation 

in the explicit form of the action is 

BS  s  - fdt Jd3
s [p^ö^stVefc + t^x^i^at] 

. -Jdt^uClp^^.w^Bt , (9.5-22) 

whence 

f = (f, H) , (9'5«£3) 

H H J(| P^X. * w0) d
3u  .      (9.5-2^) 

Here, because of the constancy of the Hamiltonian H, Eq. (9•5.23) 

holds for an arbitrary dynamical variable f. The generator of 

infinitesimal spatial displacements may be similarly obtained. 

In this case the pertinent variation is 

6S - -jKj*hlP0*A,^*t&\,^±>c**C)>*]    '     (9-5'25) 
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whence 

x,     Bua = b\ 

4 / -jPt,idVfcoiij'ö±ij« ■ <ta,b,xj"*'k'8iV) 

The possible extra term te±   [cf. Eq. (9-3.60)] vanishes since 

G     o(t-t»)=0. as may he inferred from the fact that the 
ij'^a 

velocity of propagation of small disturbances relative to the 

medium is either zero (absence of internal stresses) or finite, 

so that G. ., = 0 when t = t».  Since the total momentum 

P. m   L0  x. d3u £ fp Vj. d3x (9.5-27) 

is conserved, Eq.. (9-5.26) may immediately be generalized to 

f i = (f, Pi) 
(9.5.28) 

for all f.  It is to be noted that spatial displacements are 

treated separately from displacements in time in this nonrelativis- 

tic theory; thus the 5ua have no dependence on t, and 6t has no 

a 
dependence on the u . 

The defining equation for the Green« s function has an 

uHdesircvble feature when written in the form (9-5-21), namely, 

some of its indices refer to the Laerangian system while others 

refer to the Eulerian system-  For many purposes it is convenient 

to transform completely to the Lagrangian system.  A vector PL^ 



in the Euleritm system is transformed into a contravariant vector/ 

Aa in the LaQrangian by 

Aa - uaa A1 , (9.5.29) 
>i 

and, reciprocally. 

A, = x.  Aa . (9.5.30) 
X       X^ ti 

Furthermore, 

Aa.b ■ Ai ^j -j^b ■ ua,i Ai,b *      ^.5.31) 

where the dot followed by an index denotes covariant diCfereatia- 

tion with respect to the Lagrangian metric y .. It is important 

to note that the transformation coefficients x. „ and their reci- 

procals da . generally depend on the time.  Therefore, when time 

derivatives are performed the velocity and absolute acceleration of 

the medium relative to the Eulerian inertial frame make their 

appearance.  Thus, defining 

va « ua  x,  ,   aa = ua  "x.  ,       (9.5.32) 
>i i ' »11' 

and differentiating Eq.. (9.5.30), we ftnd. 

ua . Ä'. = Xa + 2v
a ,, Ab + a

a , Ab  .      (9.5.33) 

The Green's function equation in the Lagrangian system therefore 

takes the following form: 
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• •+«.     a  • +c    a  ,±c  \ 
-P0(0 f + ^ .cG"b« +a -c0 b«1 

UM elastic medium is most useful in providing a "labora- 

tory coordinate system" when it is in a "ground state," in 

which its oacillation modes are quiescent and its bulk motion is 

uniform rectilinear.  This dynamical condition is described by the 

vanishing of the internal stresses taD as well as of the quantities 

va  and aa.  It must be recocnized, however, that such a des- 
•b 

cription is a serai-classical one, and an investigation must be 

made of its consistency with the actual presence of zero poiut 

quantum fluctuations. ' The quantum fluctuations may be described 

interms of the difference between the actual Eulerian positions 

x of t'e constituent particles of the medium and the average 
i 

values -Xi  of these positions: 

8 x.  = xi - ^ (9.5.35) 

The  validity of the semi-classical approximation depends on the 

accuracy with vmich average values of products may be replaced by 

produces of average values.  It will, in particular, depend on the 

accuracy with which the average value of the Lagrangian metric 

may be expressed in the form 

Oab)  "  <Xi^ <Xi.b> (9-5.36) 

The actual lagranGian metric is given by 

<*t,l <*.$    + 2 Sab + 8 Va & ^.b '  (9.5.37) 'ab 
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where s ^ is the strain tensor: 
ao      •       

ab 
s ^8xa.D+ **fj     ' (9-5.38) 

the covariant derivatives beinc defined with respect to the metric 

(9.5.36) and the paBsage to the Lagrangian system being now under- 

stood as effected by the transformation coeffieients \x.i J .  The 

problem therefore becomes one of determining the conditions under 

which the mean value of the product & xc#a 8 x .b will be small 

compared to v i V 0ur approach will be to begin by assuming the 

semi-claasical approximation and then to demand that it be self- 

consistent. 

The smallness of the product öx   ox . implies that 

the strain tensor itself is effectively small.  A Hooke's Lew 

approximation to the elastic forces may therefore bo assumed, 

and, by c.ppropriate adjustment of the zero point, the internal 

energy may be expressed in the form 

1 abed „ w   =    c     S   S 
0    2      ab cd * 

(9.5-39) 

I 

' 

yielding for tue stress density the expression 

ab abed „ - c    s cd 
(9." ^0) 

where the ca C are now independent of the dynamical state and 

depend only on u. These expressions depend, of course, ou the 

original assumption that the medium is stressless, on the average, 

in the quantum state in question: 
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f 
(-.*> 

<tab) (9.5.1*!) 

It Is convenient to choose the Lagranglan system In such 

a way that it becomes Cartesian when the stresses vanish. That is. 

(O ■"ab 
(9.5.M 

All Lagrangian indices may then be written in the lower position, 

and covariant derivatives become ordinary derivatives.    The 

"displacement vactors" 6 x    satisfy the commutation relation 

[ 8 xa , 6 xbl ] i G 'ab«    * 
(9.5.^3) 

where G ,. is the propagation function formed from the Green's 
ab' 

functions of equation (9.JO1*-) which, in virtue of Eq. tf.'y.kl) 

and the conditions of uniform motion, namely. 

(O - o '      (0 
here reduces to 

"0 '^ab' + (C acde  db^e'^c 
6ab« 

(9.5.^) 

(9.5-^5) 

It will suffice now to restrict the discussion to the 

case of a uniform Isotropie medium. The condition of uniformity 

means that the "elastic moduli" cabcd are simple constants, 

independent of u, while the condition of isotropy means that they 

can depend only on the Kronecker delta. The most general 

expression having the symnetries of catcd 
l8 

cabcd " X &ab 8cd + ^&ac ^d + 6ad «W«   ^5'h6) 
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15 
where X. is the Lame constant and n is the shear modulus.  Equation 

(9.5.14.5) therefore hecoroes 

- Po 'ö±ab» + ^ + ^ G±cV,ca + " G±abScc " ' 5aV '  ^ 9-5^7) 

which can be solved by tha standard methods of field theory. Thus, 

introducing dyadic notation and making use of the Fourier decompo- 

sition of the delta function, one imnediately finds 

0* - (^rMd^Jto^.^ ♦ e2 e2) f(k) 

/x.\1  i[k • (u - U») - <u(t - t,)l        (q e,hQ) + e_ e_ g(h)] e S  v-  •• »   vyO'^o,/ 

where g,, § , g- are mutually orthogonal unit vectors with 

e = Jc/k , k = |k|, and where 

p0 a»-ctnt
K 0 a) -ci k 

ct = s^VTo  , «j - A* +2"^^ • (9.5.50) 

The contours C* in the complex a>plane are shown in Fig. (9-1). 

The evaluation of the integrals is straightforward, and one finds 

o 
where 1 is the unit dyadic and v' is an abbreviation for the 

integral operation involving, as a kernel, the Green's function 

(Wj^lu - u'l'1 of the Laplacian operator. The quantities ;s c. 
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-qk   -ctk 

Fig. 9-1.  Contours for the Green's functions of the elastic medium. 



I 
and c are identifiable as the transverse and longitudinal sound 

velocities respectively. 

The definition of the "ground state," vhich we may denote 

by |0> , is expressible in the usual way in terms of the positive 

and negative frequency components of the displacement vector 

6x. 
16 

5x^+) |0> (o| txj^   = 0 (9.5.52) 

From this it follows that the mean value of the product &xa8xbt 

in the ground state is given by 

(6xa 6^,) - ((Bxa^
) + bxj'h 6xb.) o (&x^

+) 6xbf) 

-  ftBx^ , ^.l) = iG^.  ,      (9.5-53) 

where G^  . is the positive frequency component of the propa- 
ab* 

gation function, the integral representation of which is identical 

with (9.5.W) but with the contours C* replaced by the contour C 

of Fig« (9-1). Contracting Eq. (9-5.53), differentiating *Lth 

respect to u and u« , and then setting u^= u^ , t = t« , we 

readily find, using the integral representation. 

<&xc,a &xc^    "    Tab f-J Vb < ^k 2c
i
k 

1  )  d5k 

J^_,   L.   ri + JL ) /k d5k   .   (9.5.5^) 

The quartic divergence of the final expression represents 

a breakdown in the continuum description of the medium. An 

actual elastic medium will be composed of a large number of 
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particles, all of which may for simplicity be assumed to have the 

same mass m. The density is determined by the mean interparticle 

separation i, 

p0-«i-3    , (9-5.55) 

and the continuum description becomes invalid for wavelengths 

shorter than this distance. By counting the number of degrees 

of freedom in the medium one sees, 1» fact that the interparticle 

separation provides an effective cut-off for the integral (S?^-^). 

For purposes of making estimates of orders of magnitude this 

cut-off may be taken as 

k   = 2*   , (9-5.56) 
max   £ 

We then have 

and the condition that this average be small compared with the 

metric (9.5A2) is evidently 

2 „2 _1 ( i + J^ ) « 1 . (9-5.58) 
5 ^ mi ^ ct   ci 

This is also essentially the condition for which the quantum 

fluctuations in the positions of the constituent particles remain 

small compared to the interparticle separation: 

<*** Bxa> « i2 (9-5.59) \  a  a'        • 

Since the integral (9«5.510 is heavily weighted toward the 
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cut-off end, it 1B dear that Eq. (9.5-57) provides a good estimate 

of the local fluctuations in the Laarancian metric even when the 

density and elastic moduli vary from place to place in the medium, 

provided only that the variation is small over a distance i 

(which is in any case required for the validity of the continuum 

description). The estimate is also good for media which are con- 

fined to limited regions of space (having dimensions, of course, 

large compared to i). For the behavior of the interior of the 

medium will he relatively insensitive to "edge effects," and the 

long wavelength end of the "phonon" spectrum may he adequately 

treated hy the imposition of periodic boundary conditions. This 

fact is important since, in the analysis of the measurability of 

the gravitational field, it permits us to limit the introduction 

of physical coordinate frames to particular regions of interest, 

so that all of space will not have to be filled with an elastic 

medium. 

In the extension of the theory to the relativistic domain 

the additional requirements 

ct < 1 , 

must be imposed. From this we infer 

2 mi » n or 

Cl    <    1     ' 

*  » S2> I2 m  m 

(9-5.60) 

(9-5-61) 

which says that the interparticle separation must be large com- 

pared to the Compton wavelength of the particles if condition 

(9-5-58) is to hold.  It has been emphasized by Pauli (1921) 
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that the conditions (9.5.58) must not be regarded as Implying that 

there is an absolute upper limit to the values of the elastic 

moduli which a medium can possess. The principle of relativity 

can say nothing about the possible strengths of interparticle 

forces. It can only say that if the static moduli become too 

large then the above phenomenological description of the medium- 

in-motion must break down. A dispersion of elastic waves must 

occur, and the group velocities will satisfy the conditions 

(9,5.60). 

The conditions (9.5.60) and (9.5.61) have an important 

consequence for the magnitude of the contribution which the 

zero point fluctuations make to the total energy density of the 

medium. This contribution is easily calculated from the usual 

sum over elementary oscillators: 

v-3 [ 5 ( 2ct
k + c k) d3k - nV4 (2ct + CJ) (2n)' 

max 

< 3 «V^« m,«"3 = P0 ,       (9-5.62) 

It is seen to be negligible compared to the rest energy of the 

medium. 

The formal mathematics required to place the theory of the 

elastic medium in the context of special relativity has been de- 

veloped by Herglotz (1911).  Its extension to general Riemannian 

space-times with fixed metric is straightforward. We retain the 

labels ua for the constituent particles but now describe their 

motion in terms of world lines Given by a set of four functions 
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x*1 (t, u), vhere t Is an arbitrary paraiaeter. 3 "Oxe  symbols xT 

refer to a oonipletely arbitrary set of curvilinear coordinates in 

space-time. Conanas will denote ordinary differentiation and dots 

covariant differantiation with respect to the space-time metric 

g,*v. Differentiation with respect to the parameter t will be 

denoted by an «rerhead dot and will be performel only on quan- 

tities which are regarded as functions of t and u. 

The Lagrangian metric 7 . which determines the internal 

energy density rniEt now be determined through strictly local 

considerations. For this purpose it is convenient to introduce 

the unit velocity field 

v^ = (-i2)"2 ?    , (9-5.63) 

together with three other unit vector fields n^ , i = 1, 2, 3, 

satisfying 

n, ^ 
i^ i^ J 

JiJ 
(9.5.6») 

and hence 

Qi \    'r    * ^ + v^ vv (9-5.65) 

The vectors n.^ define a three dimensional local Cartesian rest 

frame at each point in the medium. A displacement Bx^^ with 

respect to this frame corresponds to a displacement of the co- 

ordinates yt  of amount 

6xP = n^ b*.^      , 

63 
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and to displacements of the t, u by amounts öt^ &u satisfying 

5^ - ü1 6t + ^ia 5u
a ,      5t - (-i2)"\ ^,a 6u% (9.5.67) 

vhencc 

Sxj - n^ xf1^ 6ua ( (9.5.68) 

Bxl 6xi " 7ab bu*  6ub  * (9.5-69) 

7^-P  xtl
Qx

v.. (9-5.70) 'ab    uv  *a  »D 

Although the Lagrangian metric defined in this way describes the 

local deformation of the medium as viewed in the instantaneous 

rest frame, it will not generally be the metric of any actual 

hypersurface.  Since the quantity v y?  0 generally does not 

vanish the displacement Sx. will usually involve a dlsplacemeat 

in the parameter t [see Eq. (9.5.67)]. 

The rest-densities of mass and internal energy in the 

Lagrangian system are assumed to be the same functions p0 and 

w , as before. The corresponding densities in the local Car- 

tesian frame are obtained throufch multiplication by the inverse 

of the determinant of the transformation coefficients I1
iu
x^,a • 

This determinant is evidently equal to the square root of the 

determinant 

y    s    det (7ab) (9.5.71) 
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17 
of the Lagrtoieian metric. Making use of the identity 

»here c   and e    are respectively the three and four dimem- 
ijk    lATpT 

eional antisjmmetric permutation symbols, one easily finds that 

the determinant of the transformation coefficients may also be 

expressed in the form 

2     2 / ■'■2\ 3(x) 
72 -    8 <-x)3tvi) 

(9^5-73) 

To obtain densities in the general coordinate frame a further 

multiplication must be performed by the determinant of the co- 

efficients of the transformation from the local Lorentz frame, 

defined by combining the n^ with v*1, to the Ijcal mesh formed 

by the £  . This latter determinant is Just g2. Therefore the 

relation between a rest density f0 in the Lagrangian system and 

the corresponding "proper density" f in the general coordinate 

frame is given by 
1 1 
2 "2 

f = B 7 

2 2 5(t.. y) 
(-x )   SixT- f. (9.5-7"+) 

The internal stress density may likewise be defined in 

the various reference systems. We have 

1 

t. 
"U 

7
2n,  ^ . n.. xv v t 

v   ab- 
^ A »a "Jv * ab ^  » 

l 1 

t- . gV^j^iJ - (-i2)5 ^  ^Va,a^btab '        ^•5-75) 
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where tal> is given by Eq. (9.5.9) as before. Similarly we define 

0^T 3 (..2)l a^u) f^jr^y^ ^ c*™     (,.5.76, 

We note that 

t,lv v  - 0 . c**"  vT = O .   (9.5.77) 

Conservation of mass (in this case rest-mass) is again 

expressed by Eq. (9.5.2).  It is easily verified that in the 

general coordinate frame this becomes 

(pv% - 0 . (9.5.76) 

The form of the action functional for the relativistic 

medium is suBgüstea oy our previous experience with tue relati- 

vistic clock.  In place of the mass m in Eq. (9-^.2 ) we Put the 

total rest energy /(p0 + w ) d^u. Thus 
J 1 

S = -Jdt /d3u (p0+ w0)(-x
2)2 -        (9.5.79) 

in varying  this functional in order to obtain the dynamical 

equations it is important to remember that the metric tensor appear- 

ing in the quantity x2 s g,  x^ xV and elsewhere is sin explicit 

function of the x^ . Under an infinitesimal variation SxT in the 

functions ^(t, u) one readily finds 

b{.k4 - .(-x^v^x^ f      ^.^ 

6^    =    v* vv vff 6xv#ff + vv 6/>v , (9.5.81) 
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6w, ^ PV J a xT h t
ab 6x is        T    *a      »D Vi • V 

(9.5-82) 

A    , (9.5.83) 

(9.5.61*) 

and hence 

8S    - j>V«Vv 
^v    =    (p + w) ^ vv + tuv 

■ 
The Btationary action principle 5S = 0 therefore leads to the 

dynamical equations 

#v.v = 0 , (9.5.85) 

which, when coeibined with the mass conservation law (9.5.78)^ 

may be re-e^pressed in the form 

v^  vv = P"1 ^   , •v 

^ - -^v.v > 

^v S w y^ vV + t^
v . 

(9-5.86) 

(9-5.87) 

(9.5-88) 

The quantities f^ and ^v may be regarded as the wrld force 

density and the internal stress-energy density respectively. We 

note that the condition v 

hence 

v^  =  -1 requires v   ^       = 0 and 

f^ v      =    0    , (9.5.89) 

which- also follows directly from Eqs. (9-5.87) and (9-5.88) 

together with the readily verified identity 

t^Vv . 
H* V (9.5.90) 
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The quantity l^is the total stress-energy density and is Identical 

with the quantity defined by Eq. (9.5•52)« WitB  follows at once 

from the easily computed derivatives 

1 

ö(-i2)/ö V = " I ^ ^ VV  ' (9*5-9l) 

& V^v - - | ^ PVT ^a -T,h ***. (9.5.92) 

We postpone discussion of the propagation of small 

disturbances in the relativistic elastic medium to the following 

section, in which the theory of Qreen's functions and Poisson 

brackets is developed for the more general system involving a 

dynamical gravitational field and a framework of clocks in 

interaction with the medium. 
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/^.A) Greeo's functions for Perml Systems. 

in addition to the real dynamical variables ♦i of Sections 2 and 5, we 

introduce Hennitian variables *L  satisfying Fermi statistics. In the semi- 

classical approximation the ^ commute with the 0  but anticonmute among 

themselves. The same conventions as iu the text will be adopted for associating 

indices with the point labels x and z . Indices associated with the aati- 

commuting variables, however, will be identified by the use of boldface type. 

Since the fi*  anticomnrute they must be contained either linearly or in 

completely entisymmetric combinations in all dynamical quantities- Therefore 

boldface indices induced by repeated variational differentiation with respect to 

the $~  will anticcmnute among themselves while commuting with any light face 

indices induced by variational differentiation with respect to the 0 .  Such 

indices will be written in the order in which the variational differentiations 

are performed, and the type of derivative involved will always be the so-called 

"right" derivative. Thus the variation in a physical observable A due to 

variations SO1 , b^  in the dynamical variables is given by 

6A = AA ^O1 + A ,b^d.hx    -    f{**\± -  8*iAa)dUx , (A.l) 

the variations SO1 , 6*w being assumed to have the same commutation properties 

as the dynamical variables themselves. 

In the present case a dynamical quantity may be a group invariant without 

being a physical observable. A physical observable A (and also the action 

functional S) must not only be a group invariant but must also be conq?osed out 

of combinations of the ^ of even degree only.  If it is also real (Hennitian), 

then its variational derivatives of order 1, 2, 5, 6, 9, 13, etc. with respect 

to the ilri- will be imaginary (anti-Hermltlan) while its variational derivatives 



of order 5, k,  7, 0, 11, 12, etc. will be real (Qeraitlan). Furthermore, 

regardless of its reality. Its veriatlonal derivatives of even order with 

respect to the fi   will coninute with everything while its variational deriva- 

tives of odd order will anticoomute among themselves. Reflecting this latter 

rule the formalism "below will be set up in such a way that quantities bearing 

an even number of boldface indices will always commute with everything while 

those bearing an odd number will always anticommute among themselves.  The 

symmetry and reality properties of the two kinds of indices will not, however, 

generally follow the pattern which holds for covariant differentiation. 

In the following we shall simply rewrite the pertinent equations of 

Sections 2 and J in the modified forms necessary to account for the new variables 

yb,  commenting upon them only when points of clarification are needed. There 

are now two sets of dynamical equations 

S 4 - 0 and 
»Ls 

0 , (A. 2) 

The infinitesimal group transformation law (9.2-2) becomes 

i \ 60 

Bij/i- 

bt    dV , 

while the condition (9.2.5) is replaced by 

'R1       R1    \ -i       R1 

RiB«,J   RiB»*J» 
si*- 

(A.5) 

R
"T»I.II   

R
*RI.II \  / R' 

Ri' 
I    A 

Kr d x 

(A.U) 

I 
I - ii 



Equation (9.2.U) remains unchanged. The quantities R A, ri«^ , R AJJ' *  ^^J' ' 

R^ .  are real while the quantity R1. ., is imaginary. The product of the 

latter with R^,  is, however, real, since it may be written in the form 

(A-5) 
^ ^'B' I [R'A... » «^R.J  ' 

* ^ 

In these and all future equations the order of factors must be taken into account. 

It will be noted that the group parameters 6|L  are here assumed to be real 

« 
numbers which commute with everything. 

The condition (9.2.5) for group invariance becomes 

A1,! «'A +  ^i RH) 4*X - 0 (A.6) 

In virtue of the law 

(X u)   = - x u ♦ xu   , (A.7) 

for functionals U of odd degree in the *~,     we obtain, on taking the vari- 

ational derivative of Eq- (A.6) and remembering the symmetry properties for the 

induced indices. 

r   \ ay 
111 i 

d^x« 
^J'^ A^i^^J'^^i \ 

1^^ V ^aj 
dSt«,  (A.Ö) 

which, when applied to the action functional S , yields the relation demonstra- 

ting the group invariance of the dynamical equations: 

*The possibility of anticommuting group parameters also exists, but since it has 
no apparent physiCil interest we do not consider it.  It is encountered, for ex- 
ample in the gauge groups of massless fields having spins 5/2, 7/2, 9/2, etc. 
Since these groups are Abelian the structure constants vanish. The general non- 
Abelian case would involve anticommuting structure constants. 
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A*i. 

Aji 

■L A*! \ ls*y 

«it/ 

*f (A.9) 

A,i / V S*J» 

Tbe minus sign on - $Ai±    results from an Interchange of anticoomutlng factors. 

When the dynamical equations are satisfied we have 

'»U» V) \ 

*'#'        S^ 
B&, 

K* d x (A.10) 

which shows that the solutions of the equation 

/ S,1J' 
±y 

■A  *        \>xI (A.n) 

for the variations Induced by the change    S -» S + €A    in the action are not well 

defined hut are determined only up to a group transformation (A.j)-     To render the 

solutions unique we introduce two sets of real functions    P1    , <i±A    and two sets 
A t* m 

of imaginary functions    P.     , Q..     such that the continuous matrices 

U" FiJ' 

FiJ' 
Mr-/ 

'AB' 

„ B» 

3i\'A     \ 

/*, tow 

A A Pi VA      Pi ^'A 
/ 

d z ,     (A.12) 

(A.13) 

(A.l^) 

are all nonsingular wave operators. Use of the Green's functions for the first 

of these wave operators yields solutions of Eq. (A. 11) satisfying the 
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supplementary condition 

(A.15) 

We note that F^, , F^, , F/'  are real while Fy, , »y, , F^, are imag- 

inary. Correspondingly, G**'  ,  G^ , 0^* , G^   . 0"/* ^t be real 

while G^-  is imaginary. 

» u A 

The defining equations for the Green's functions of the wave operator 

(A.12) are 

,; Fik"      ^ik11 fo*y:. 

rfsTJ' . y\Fik"  Fik"/ \G-'.' 

^k"    „±ik"\ 

<.*"/ 

/ 

d^x" 

Bi^ 

(A..l6a) 

G    /v Fk"J« \   k 
**    d x" 

lk"jf 

(A.l6b) 
k"j' 

G'V/        G vwv y   I   Fjii,j 

We do not repeat the proof that one of these equations follows from the other. 

It carries through Just as in the text in spite of the presence of anticonmuting 

quantities, provided the factors are placed in the order indicated. Again a 

Ewgens» principle can he set up for solutions 60 , 6*^ of the honogeneous 

equation defined by the wave operator, namely 

(A.17) 

where G s  G+ - G~ for all G's and where 
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( 

J 
(•j1 tM 

•ij» 'ij» ♦, 
(«1

J,   ^i'). 

> ww 
FJ«1   FJ«i I (Ö2 

•»•. d x 

JA./dVJL t^1 ^) 
J" 

j1; 

(A.18) 

^i'j" ^i'j'V \ •^ 
f^M/ 

Here f^^ ., is real while f^^j.. , ^.j« , ^.j- are imaginary. The 

*/ *> if •** 
functions «^ , 0^, etc. may here be of either the commuting or anticom- 

muting type. 

Equations (9.3.17) through (9-3.31) of the text are replaced respectively by 

\    /6  **^    N 
■ij«     'ij' \  /A F.,.     F^S\   Z6*   •-     \       ^  , /A . \ 

1 

(A.19) 

6AV 
A 

\A,i / ' 

55
A    =   /d^x/d^z.     G^ (QiB.6AV + Q^.6^  , 

(A. 2D) 

(A. 21) 

JVA -^Ai Fj'1   Fj,^A' ■ /V'»!... «i»-' A:'  (A•^^, 

J'i W 

vJ J ^        \    ±1.1»      _*u« / [0^   <&£/ 
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-ik"      Flk" 

^k"      ^'ik" 

_±k"J«      -±k"J»\ /^«k" Tj'k" 

G^"«1'       G^T/ -G^'i."       -0UU9 

'ik"     rik" 

lFik"      ^k" 

7kni        ^"1 

.dVV d^z 
•tw awv 

^iVA - Pk"\A      PiVA " PkA 

^J'k"       _G^k" 

x 
.G^T       -G^^l , 

dV 

(A.31) 
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V   /   dV  F/  GV"   ^'n"     -^ (RJ,
a      «£)• (A-^ 

i« v 

G W G  w» 

A   = /»V1 (RJ,B'   -^B^   d Z8 '   (A'25) 

•- -''  d x 

=     eJtK'J^  0\B'   (A#JI  RJ,
B.  ♦ A^.  Ri^.) (A. 26) 

'u1   V 
/RJ' 

FiJ«    FiJ 

dHx«     = 

•7 R«w / 

^B-A    ^^     ' 
(A.27) 

/A; jv.. 

/A./dV   ;  o 

G^'       G^     ' 

B» 

FB'A 

/R1. 

,i     \ 

n   /' 

^"B» 
B'A 

R^/    » 

(A.28) 

(A.29) 

,4^'       0*1^\ 
d x» 

RA       \.±ABJ     A d z (A. 30) 
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G^'1       -G^1 

l-G     <v«      -tr (^ <w 

/ 

jiv/^-K* / v/     / 

\ 

lllr" ^ ■? +1s k" +1 • k 

,+B»A 
.lik"      -±ik" 
G /* G v"v» 5J

, J' i<" B'VA      ^ B'VA/ 

(A.32) 

BA*B - 6/A 

/n^'      B*^ /a 

'M' d^x» (B,i    ^i) 

^G^J' G^i: 

/^J'1      G*J^\    / B 

{A.y A,J«) 

t/A/A«   (B,,  B^) 
G^'1      .G^X\ 

iG^'       G^/ U 
/J 

A.y 

AM 

(A.3^) 

Since the reciprocity theorem holds, a canonical transformation croup may again 

be introduced in order to show that the Poissonbr^cketB satisfy all the usual 
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I 

I 

35) 

„ A  x, A  Q    a   may usually "be chosen In practice in 
The functions P,  , P*  » SlA ' QiA "^ '"""^ 

such a way that 

(A. 36) 
FiJ' " FJ, 'i » FiJ' 

14* 

* 
Ay»*- 

In this circumstance 

G^' ■ G^1 » 0^' ■ -GJ'1 

\ 

G^' B -GU'
1 

> otf - dll1 

1 

GSU: 8 ^Ti. t 
G^v - G»*^-^-^ 

'/ 

(A.37) 

and,  in passing to the rigorous quantum theory, the commutator 

i(A, B)    3     [A,  B]    -  J{*,± A^) 
It*; B] 

'[o1, *JS1 -[«S ♦^1\/B,j« 

-/A/A-   'Wl^.,.^^/^ 
** -s1 Ji>. «atisfied the comnutation relations» may then he computed as if ♦ , r~- satisrxea vu» 

(A.38) 

« Tbe curly brackets denote the anticonmutator. 
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[•*,   ♦i* ]    - -i G1^'        , 

(A-39) 

Beyond this point we encounter problems of operator consistency which require 

a separate investigation.    We note, however, that the propagation functions on 

the right of Eq.  (A, 39) possess the reality and Bynmetry properties demanded hy 

the commutators or anticommutators on the left. 
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(9.6) aaLigagggg of the gravitational field with a stiff elastic 

medium carryj™ ^ framework of clocks. 

|i we have now reached the point in our discussion at vhich the gravita- 

tional field may be introduced as a dynamical entity.  It may seem un- 

■- usual that a study devoted to the quantisation of the geometry of space- 

time should devote so much preliminary attention to the quantization of 

physical systems vhich occupy space-time. As has been pointed out in 

I the introduction, however, it is only by measurements performed with 

the aid of such systems that a meaning can be given to "space-time 

t geometry" in the first place.  Furthe^nore, the general theory of measure- 

ment (in whicn such systems play an essential role) and its mathematical 

analysis throufch the theory of Green's functions, which is basic to the 

covariant approach, had also to be developed first, in Sections 2 and 3- 

We now put every thing together into a combined system. The consti- 

tuent particles of the elastic medium will themselves be taken as rela- 

tivistic clocks having rest masses m depending on action variables J. 

We may speak of an angle-and-action-variable field, 0, J, which is, in 

effect, a conceptual idealization of an actual clock framework.  The 

masses m may have an explicit dependence on u as well as on J. 

The rest mass density will be given by 

(9-6.1) p0 - n^n , ^ 

where n0 is the particle numoer density in the I^grangian system, which 

may itself depend on u .  Conservation of particle number may be expressed 

in either of the forms 

I. ^o " 0 ■ ^t   " C '       <9'S'a) 



for a vector A  we have 

Aa = 8a ft(%,  x) A^ d^x , (9-6.3) 
^J 

A' = ^aJ^J^WÜ) 6(X' "^ '       (9*6-') 

Conservation of rest mass will follow in the present case as a consequence 

of the dynamical equations [see Eq. (9«6.lU) ]. 

Since the metric components K  are now dynamical variables, subject 

to their own independent variations as functions of the space-time coordi- 

nates x*1 , it becomes in^KMC-tant to make a clear distinction between the 

/ as point labels and the functions ^(t, u^ which describe the world 

lines of the constituent particles---a diBt.'.acttoi which was unnecessary 

as long as the metric remained fixed, as in the precedins section. To 

assist in making this distinction we shall replace the symbols xr(t, u) 

for the world-line functions by the symbols z (t, u), a = 0, 1, 2, 3« 

Furthermore, it will often be found convenient to regard the qunatities 

appearing in a given covariant expression sometimes as functions of the 

z's  (and hence of t and n_ ) and sometimes as functions of the x's. 

Tensor quantities regarded as functions of the z's will be written 

with Greek indices taken from the first part of the alphaoet, while the 

same quantities regarded as functions of the x's will be written with 

Greek indices taken from the middle of the alphabet.  The z- or x- 

dependence of quantities bearing no indices will generally be clear from 

the context. Since the z's, but not the x's, are dynamical variables 

the relation between the two types of quantities is not symmetric. Thus 
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from which it  follows that dynamical variations  in   A      and    A      are 

related by 

BA«     -    b\Jb^  x)  6Atl ^    +    A%  ^ ' (9,6,5) 

BA^  = ^a At jd3u ^SLj 6(x, z) V?    -    A\v  5z\   (9-6.6) 

It is also to be noted that although variation and differentiation with 

respect to x, t, or ^u conmute, variation and differentiation with 

respect to z  do not. Thus we have 

^V ■ ^\ß + AW 

-  (6A«)#ß - ik\7  + A
a,au

a,7) (5z^ + Sz^bu\ß) 

■ ^aKe-*a,^7., • (9-6-7) 

Equations (9»6.3) through (9.6.?) hold unchanged in form, except for the 

number of indices, for all tensors and tensor densities. 

The action functional for the combined system may be taken in the 

form 
1       1 

S s At /d3u [n0J § -  (n^ + w0) (-£2)2] - jg^ d^x ,     (9.6.8) 

where fi is the Riemann scalar. The dynamical equations are 

0 - g - .0(6 - «-i4i   ■ iX^§  «(e.^ - .),       (9.6.9) 

0 - i ■ V ■ - ^ ■"•a'0' - <'-6-1C" 
_    SS _   b{z) ß 
0 " ~a = 6(t, u) Ta -ß , (9-6.11) 

8S   -i GV1V ♦ h?*       , (9-6.12) Si 
^1V 
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where 

?*    s 62 (R^.2^
VR) (9-6.13) 

in the covariant forms of Eqs. (9-6.9) and (9.6.IO) e and J are to be 

understood as sealer fields. From the latter equation it follows that 

4 - 0 , (9-6.^) 

and hence the rest mass conservation law (9-5.78) holds. 

The action (9.6.8) possesses two independent infinite dimensional 

invariance groups: the general coordinate transformation group and the 

group of transformations of the parameter t . Under the infinitesimal 

transformations x^ = x11 - 5^ , t« = t - Bt, the dynamical variables 

suffer the changes 

8J = J Bt 0 , 

1 
l2\2 60 = © Bt = CD(-Z ) Bt , 

6za = iaBt . 6xa , 

(9-6.15) 

%v= 6x + Bx .  , 

which lead to the following characterization of an invariant A : 

"69    V Sz« " 0 ' 

06  BA.  ^ . ö(z)    / BA  \   .  n ^ »^Slr^i^^p* 0 • 
The  quantity BA /Bg^    is here to he understood as obtained hy first 

^9.6.16) 

(9-6.17) 
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comxmtin. tte wrlatic-l doriv.i.ivc aA/5Siv and then transfoming from 

the    x^s    to tlie    z's    via Eq.   (9-6-3). 

in order to obtain the equations satisfied *■ small disturbances 

a number of somewhat dtombersome ^ariational coBiputations must first be 

carried out.    An outline of the principal steps involved is ßiven in 

Appendix B at the end of the chapter.    The results,   for variations    &*!, 

6*9,     ö±za,    b\v    induced by the change    S -   S + eA in the action. 

are 

Jw    4     x 6A 

. ^   (^(a s%.r -  .*ß7.ö)    + tl   (P-)  v/v^v8 +  ^t' 

(;.5.i'i) 

(9.6.19) 

r*P8 

5A 

52 
a 

(9.6.20) 

I g2 (^VT - I ^V6aT)  8PX(6V-PX + 5±6pX.aT " B*^p.TX " ^^X-ap5 

+ I g^ (s^T + g^R^ -  2 rRVT - aß^T ^ rsVTH - I 6WTR)»V 

- ^Z^^)^ - I ir6±«V.<J * I T^V.ff + I [(P+w) ^vvvV 

+ 2 ^vCTtvT + 2 vWT - v^vV- - vCTvVv - C^^^-V 

(9.6.21) 18 
+ - najv vvB_J      *      "    e 5e        * 

where s+  and s"   are the advanced and retarded forms of the invariant 
C$}       Op 

strain tensor. 

•ce H l(8za-ß + 8zß-c + 86^) ' 
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IV [The quantity, 6g^ is here related to the primary variation Bg^ 

in the sense of Eq. (9.6-3), not Eq. (9.6.5). 1 This important tensor 

will be seen to play a rather ubiquitous role in the theory.1  P^om 

Mqßm   (9.6.15) it is apparent that variations produced by an infinitesimal 

coordinate transformation make no contribution to it. One may easily 

show that the strain tensor in the Lagrangian system [cf. Eqs. (9-5.37) 

and (9.5-38)] is obtained by projecting the invariant strain tensor into 

the local 3-spaces perpendicular to the world lines of the constituent 

particles: 

_ 1 R    -  Pa P^ z7 z8 s  - (9-6-23) 

in order to solve the equations for the small disturbances it is 

necessary to impose supplementary conditions.    The following conditions 

are  convenient: 

vVs*       =    0    . (9-6.210 
op 

(gTs^-laTs^V-v   -   0   - (9-6.25) 

If these conditions are not already satisfied they can be impoced by first 

carrying out coordinate and parameter transformations (9-6.15) for which 

6t - (-z2)"^ /(-z^vVs^dt, (9-6.26) 

J    V (9.6-27) 

where the df ^  t    are the ureen's functions satisfying the equation 

tk 



I 
i 

I 

When the supplementary conditions hold, the equations for the small dis- 

turbances may be solved with the aid of Greenes functiou« satisfying 

the equations 

t FJJ"   W      0 o   \ 

v«    0    0 

€"5" 

^±T.,T.  oVe»  G±.Tll
,',  G*.. I8, J-J J'V'ö' 

c±9"j*      GVG«  
a>7   G"e"r,6' |^ i 

,±€" ,±e" "~t 

Ji 
.±€"7 +e" 

•-•b« 

,t       + 

^J"   0 F
ae"      Fa 

V*J*      0  ^c" ^£,,r / \G±e"C"J' G\«rB*    G±e"^   
u€"r7'5V 

6(z, z«)     0      0 

0     SUiz«)   0 

0     5a'    0 

0   ^   , 

where 20 

- - n(öuyöj) 8(z, z«) , 

7'5
! /,   (9'6.29) 

(9-6.30) 

'JG« r0J' 
n ^.a^'  z,) > 

FaJ' = ■ [m,vavP 6{z' z?)3-ß = " ^^a6^'  2,)]'ß , 

Fae« 

ßr6> - c P70) 6    1 

(9-6.31) 

(9-6-32) 

(9-6.33) 

95 



F 2 l    00 '7        ß7 •« 

- |  [(2 vav^B
+ 2 AV- ^^ ' v7vV 

" ca     )675        ^ß   , (9.6.3«*) 

J^Tlt    =      imvV B(z,  z«)    , (9-6.35) 

^e« 2 U €,;,7 + 2 t^y      2 «»V 

- v^t^ - c^5) 67e,.&    , (9-6.36) 

+ I s^R76 ♦ s7^ - 6a7Rß6 - g^R06 - S07/^ 

- I g^R)^6^  + ^ (2 vVtßB + 2 A't08 = v0^6 

and where 

5Qß»     s    6^ 5(2,   z«)     , (9.6.36) 

V'6'    s   I (&a\8 + ba\7) 5(Z' Z,) ' ^^ (9-6*39) 

Delta functions of z and z» , rather than t, u    and t', IJ
1
 , are 

used here in order to absorb the Jacobians wnich appear in Eqs. (9.6.18) 

(9.6.19)> (9.6.20)« The proof that the solutions obtained with the 

Green's functions of Eq. (9.6.29) actually satisfy the supplementary 

conditions (9.6.24)» (9.6.25) i8 outlined in Appendix B. 
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r It nay be inferred imnediately from Eq. (9-6.29) that the functions 

,±7» 0*_'    , 0* tfcl  *  G    !•  ' 
.±        G±€ 

The Poisson bracket of two invariants therefore takes the form 

t7% 

9 Ay vani8h• 

(A,   B)     =   Jdt jAjdf jd3u.     CW,«,^,^^ 
6A -) 

"je1 

G
OJ*   

GGe, 

„Cl 

e' 

(9.6.»to) 

where the G«s are the propagation functions formed from the G 3 . 

The transition to the proper time, which is the first step in the 

process of passing completely to the intrinsic coordinate syctem provided 

by the elastic medium and its framework (or "field") of clocks, is carried 

out in just the same way as was donj for the relativists cljck in Section 

k .    Equation (9.^3), with (-i2)2 now replaced by (-i2)2 , is again 

used to define quantities taken with a definite numerical value of the 

intrinsic proper time ofV  Equations (9A.^) and (9-^5) suffer only 

slight modification, now taking the forms 

aryj*  =  (v f>a)T    , f9.6.»a) 

tfr    -  (6±f)T 
+ ^»CPT ^1

[-(
8±

0)T 
+ TW^)(B±JM 

The Poisson bracket of two invariants, A and B , regarded as explicit 

(9.^2) 
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It may be inferred immediately from Eq.  (9-6.29) that the functions 

i 
G*    .   .  0*/'   ,     G1-  ...     .    G ± «* 7*        G± .  G±€  .   . 0* ,-T,    vanish. 

The Poisson bracket of two invariants therefore takes the form 

(A,  B)    =  Jdtjd^ujdt. jd3u.     (51,50,^,3^^ 

^        -      -     x      /   b*/bJ'      \ 

0eJ'   Gee' 

„a 
e" 

^opJ« 

.ar« 

Joß 

(9.6.Uo) 

oßy'ö T)     &S7.5' 

vhere the G«s    are the propagation functions formed from the    G »a  . 

The transition to the proper time, which is the first step in the 

process of passing completely to the intrinsic coordinate system provided 

by the elastic medium and its framework (or "field")  of clocks,  is carried 

out in just the same way as was donj for the relativlstic cljck in Section 

k .     Equation (9.^3),  with    (-i2)2   now replaced by    {-z2)2 , is again 

used to define quantities taken with a definite numerical value of the 

intrinsic proper time ufV    Equations  (9.^*0 and  (9.^5)   suffer only 

{9-6.1+1) 

slight modification, now taking the forms 

a öf^ÖT      =      (vUf>a)T , 

b±fr    =     (6±f)T +  (vaf,a)T (ü-
1
[-(6

±
G)T + T(äU)/^j)(6±j)TJ 

The Poisson bracket of two invariants, A and B , regarded as explicit 

(9.^2) 
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functtonals of Ji  (za)T » %,v   becomes, after dropping the subscripts , 

(A.B) . ßrj^fi*    (->M>^7^, 

0       - GJQ.V'V1      0  \ / 5B/5J, 

(9.6.1+3) 

where 

OPT" 3 Ga7'  .  Ga .v>V1 + v^G  .v^aT1 

a • 
- V 03 ©J 

^.v^^r. |f - VV^-T g GJe.^
,co-1. (9.6.^) 

The angle variables have now been dropped from the theory and the invariance 

condition (9.6.16) no longer plays a role. The condition (9.6.17), on the 

other hand, takes the modified form 

+ 
From Eq. (9.6.29) it may be seen that the Green's functions G"J0, , 

± ± 
G~eJ, * G 00' satisfy the followinc equations, expressed in terms of the 

proper time: 

4     (9.6.1+6) 

- n0Waj) 0*^1 
+ "ote^/Zt    = 0 . 
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The BolutiOM of these equations are 

'V ^1      -tV1^»   (T-   T'))5(U,   ü^). 
Je 

*     .      -     ?   BL,-1   (aa/ai)   0(»   (T   -   T'))(T   -   T«)   6^1,   U')   J 
CO* 0 

>      (9.6. U7) 

vrtience 

f^'     =    G^'  - G^.v^'o,-1 (9.6.148) 

It is shown in Appendix B that explicit expressions may also be obtained 

for the Green's functions G^, , G1^, . The results are 

(9-6.^ ■    0 

ax a „± 
G   0«   s   - v "^       » 

(9.6.50) 

where 

<>*(«, B«)  ■  » e(*(T - T«)) scuj u;)jf' (p0 +. V'1 dT '       (9*6*51) 

- t(p*»)^o%].a   =   -M«. «•)   • (9'6-52) 

The Poisson bracket (9.6^3) may therefore be rewritten in the final form 

/     (3     i.  ,   IM3  •   /6A      &A h{z) 6A     v (A,  B)    -JdTjd^JdT.JdV (gj , "a ,    #4)-^ ) 

B(ufu«)v7'(aW»)-L 0      \      /       6B/8J' 

-1 
va(n cü)    Mu/U.') G ; 

7    + v Gv' G    ,_, 7«6 

Joß 

6B/8z7 

.    a(z') 8B 

(9-6.53) 

We call attention here to the fact that theories for special limit- 

ing cases may be obtained by stripping appropriate rows and columns from 
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the matrix of this Poisson bracket, and by appropriately simplifying the 

definiae equations for the Green's functions. For example, in the case 

of the pure gravitational field the Poisson bracket reduces to 

where the Green's functions satisfy the equation 

1 
1      2   ,   UCT   VT 1      UVCTTv   DCU   + 

1 

- 2 6 ^  G <JTK«\»      " 6 K'X» (9.6-55) 

and the quantities A and B satisfy the invariance conditions 

(BV%V).V " 0 * (BB/^-v = 0 * (9,6'56) 

Since the formalism for this case is considerable simpler than that for 

the general case, it may be argued that by introducing the elastic medium 

with its framework of clocks we are making the analysis unnecessarily 

complicated, at least insofar as the quantization of space-time geometry 

alone is concerned.  It has been pointed out in the Introduction, however, 

that the theory of the pure gravitational field suffers from a major defect, 

namely the difficulty of finding interesting invariants, A and B , 

within its framework. Although the simpler formalism will doubtless find 

application to certain problems, the more general formalism is essential 

for gaining insight into the physical nature of the gravitational field 

and, in particular, for the analysis of the measurability problem. 

Another example, that of the stressless medium in a fixed metric, can 

also be treated as a special case. The Green's functions for this example 

happen to be expressible in terms of rather simple geometrical structures, 
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and since the solution has some points of interest a brief account of it 

is given in Appendix  C. 

We now consider the final step which must be taken in order to pass 

completely to the intrinsic coordinate system defined by the local proper 

time T and the labels ua . Since the quantities appearing in the 

Poisson bracket (9.6-53) are already regarded as functions of T and 

u . our goal is practically in sight. All that remains is to introduce 

a basic set of invariants in terms of which all physically meaningful 

quantities for the combined system may be expressed. This can be accomplished 

by taking any completely descriptive set of tensor quantities for the system 

and projecting them nnto the intrinsic coordinates with the aid of the 

derivatives za   and z*    which then disappear from the theory. The 
»a 

simplest such set is composed of just the metric tensor itself together 

with the action variable field J . 

In the intrinsic coordinate system the metric tensor becomes 

_ -a-B m     a  , .! (9-6.57) s(o)(o) - z z ^   v va 

e^  - ^ß A« - Wß      s   va ' (9-6'58) &
(0)a       >a°üp     P »a 

a        = za zß K.  = 7 ^ - v v-  , (9-6.59) eab      *&    iT&ß 7ab   ab' 

of which the contravariant form is 

S (OK
0)    . 1 + v v

a (9-6.60) 1 + v v a 
g(0)a = va (9.6.61) 

e ab     ab (9.6.62) 
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where 

cb    ft b 
'ac'      a 

v  H r vb (9-6.63) 

g^oe the composition of the medium is given, through specification of the 

explicit forms of the functions n0(u) , w0(^ 7ab) * m(^ J)* the tea 

quantities 7 , , v , J  completely determine the dynamical state of the 

gravitational field together with the medium and its field of clocks, 

insofar as this state has observational meaning relative to the system 

itself. 

Poisson brackets for the components of the intrinsic metric may be 

obtained by first computing its variations. One readily varifies that 

6e(o)(o) " *^*OV    '    0 ' 

Ö6(0)a 

Sg, ab 

~ 0: ß 2 v zK ■_, 
>a Qß 

P z  zM . s 
*  ,a *b aß 

(9.6.6U) 

(9-6.65) 

(9.6.66) 

Therefore, using the dot followed by a subscript (0) , a , or b, etc. 

to denote covariant differentiation with respect to an intrinsic coordi- 

nate (and with respect to the intrinsic U-metric), we have, from Eq. 

(9.6^3), 

^abA'd«) = Gabc'd« + Gabc«-d« + Gabd«-c' + Gac»d»-b + Sc'd^a 

+ (Gac' + ^^c'^bd« + <Gad' + ^^d^-bd« 

+ (Gbc' + vbGvc»).ad« + (Gbd' + V^'^ac' >    (9-6-67) 

■J 
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r I 
(«rt, • «(OOc»5    -    Gab(0«)c' +Gab(0')-c« + Uabc'.(0') +Ua(0Mc-t 

+ ub(0.)c«.a +  (Ga(0')  -VaG>.bc.  + ^ac.  ♦ v^,).^., 

+  (Gb(0') " VbG).ac. + (Gbc. + V^c'^aCO»)    ' (9-6-68) 

(8(0). ' HV)^ * G(0)a(0-)b'  + G(0)a(0')^  + G(0)ab«.(0«) + G(o)(oMb'.a 

+  Ga(0')b'.(0)  +  (G(0)(0')  + G)-ab'   +  (G(0)b«   " GVi-a(0«) 

+   (Ga(0')  " VaG)-{0)b'  +  (Gab.   + ^^b»^ (0)(0«)   '   {9'6'69) 

(g^j.)    --   [v^n^-H^^U-  ^(a^rH^u^)]^,    (9.6.70) 

C«(o)a>^)    =     Un^r1^^)]^-,.^)^)-^^)    , (9.6.71) 

(.,.')=   o   . (9-6-72) 

Since the propagation functions appearing in these Poisson brackets have 

always previously been defined in manifestly covariant terms,  tney may in 

particular be computed directly in the intrinsic system.    The whole theory 

is thereby rendered invariant and completely intrinsic. 

It will be noted that Eq.   (9.6.6U), which was originally imposed as 

a supplementary condition,  is automatically satisfied once the angle 

variables have been eliminated from the theory and the proper time has been 

introduced.     It is,  in fact,   the  condition which is necessary in order   that 

the parameter    T    remain the proper time under the variations    8z    , 6^, • 

The constancy of 6(o)(o) ,    ^iich " egresses,  implies that    g(o)(0) 

must have vanishing Poiason bracket with everything.     This is readily 

verified with the aid of Eq.   {B.2l) and (3.22) of the Appendix together with 

the evident relation 

to*/^    =®±       ' (9-6-73) 
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We have 

(e(o)(o) ' «W*   "   ^*7',*'**'.vlGoß7w + Goß7-6« + GoßB-r' | 

+ 2Gcc7«6-ß + 2(CV *roP!r7t)-&t 

+ 2 (Ga6' + W^ßr'1 1 

♦l0^»^ -^v5^ -^«W 

- ö(Gv7,).5S/äT . a(Gvöt)#y,/&T] 

=    o   , (9.6.7^) "I 

and,   similarly, 

(8(0)(0) ' "(OOa^    =    0>       (g(0)(0)  ' 6(0')(0'))    =    °9;6>75) 

Also, because of the T independence of n0 and CD , 

^(o)(o) > J,) " ^o^h^ ^^.(o) = 0-     (0-6-76) 
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The dynamical behavior of the syetem in the intrinsic coordinate 

frame iß entirely determined by the ten Einstein equations: 

„(0)(0)     . 1 T(0)(0) 
2T 

;(0)a    .    _ 1 T(0)a        t 

,<*>    =    .|Tab 

(9.6.77) 

The Einstein tensor-density on the left is a function of the 7ab ^ va 

and their u, and T derivatives. The stress-energy density of the medium, 

on the right, however, is a function only of undifferentiated variables. 

Explicitly, 

J0)(0) 
PQ + W'0 + VaVbt 

ao 

(0)a      .ab 

„ab    .ab 

(9.6.78) 

or, in covariant form, 

T(0)(0) 

1'(0)a 

I 

Pn + wr 

where 

ab 

ab 

(P0+V0)va ' 

(D„ + w^)v V, + t , VM0   0 a b   ab 

(9.6-79) 

= 7'ac7bdt 
bd (9.6.80) 

From these facts we may draw the usual conclusions about the number of 

degrees of freedom possessed by the gravitational field.  The elastic 
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medium possesses four degrees of freedom at each point u^ , three of 

which are external vibrational ones while the fourth is the internal one 

associated with the clock. These deerees of freedom are dynamically 

described by the momentum-energy conservation law, which here becomes a 

necessarj' consequence of the four contracted Bianchi identities. This 

law, however, is only of the first differential arder in the variables 

•y    v   J. Moreover, four of these variables may be expressed in 
'ab *     a. * ' 

terms of first T-derivatives of the other six through the so-called 

initial value equations (Foures-Bruhat,1956 ) 

- * -(O)'0* ■ >)<0> - - <»o ^ -o> . (9•6•8i, 

. 2 0a(0) . Ia(o) . (0o , „oK , t^" .       (9.6.8a) 

Therefore there exist eight independent combinations of the 7^ , v^ , 

J which are associated with the four degrees of freedom of the medium. 

The remaining two independent combinations correspond to two independent 

combinations of second-order Einstein equations. These are associated 

with the two degrees of freedom (per point u  ) possessed by the 

gravitational field. 

It should be remarked, of course, that the actual combinations of 

variables associated with the various degrees of freedom are exceedingly 

difficult to find. Although a great amount of effort has been directed 

toward their discovery they being the so-called canonical variables of 

the Hamiltonian approach to general relativity success has so far been 

limited to the case in which flatness conditiona are imposed at infinity 

(Arnowitt, Deser and Misner, 19^0). On the other hand, it is clear that 
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knowledge of these variables is not essential to the quantization progran, 

nor even to the asking and answering of questions of fundamental physical 

importance. This is particularly well illustrated by the discussion of 

measurability contained in Section 8. 

It vas pointed out in Section 3 that in order to go beyond the semi- 

classical approximation the problems of factor-ordering and self-consis- 

tency of the operator Green's functions would have to be solved. A 

suggested mode of attack on these problems involved taking the commutators 

of a complete set of invariant dynamical variables with the dynamical 

equations written in some invariant form.  In the present case the invariant 

dynamical equations would be those of (9-6.77), written with their factors 

in a definite order, and the invariant variables would be the y^,  V^, 

J.  On the other hand, it seems most undesirable to make the rigorous 

quantisation of the gravitational field itself depend on the presence of 

another physical system, in spite of the fact that the fundamental geo- 

metrical nature of the gravitational field can be physically elucidated 

only through its effects on other systems.  This becomes particularly 

obvious in the present case when one considers that the problem of rigorous 

quantization is intimately related to the problems of fluctuation phenomena 

and renormalization, which lie precisely in the domain for which the con- 

tinuum description of the elastic medium breaks down. The phenomenological 

cut-off v/hich had to be used in Section 5 to describe fluctuations in xne 

medium could hardly be expected to fit easily with the complete absence of 

an a priori cut-off for the gravitational field.  One hopes, therefore, 

that a consistency procedure can first be worked out for the pure 
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gravitational Green's functions of Eq. (9.6.55), without the necessity 

of finding invariant dynamical equations, and then later he extended to 

the case in which other systems are present. 
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(9.7) The quantized gravitational field. 

Although the quantum description of the gravitational field has many 

points of similarity to conventional quantum field theory, it nevertheless 

seems incapable—or capable only with difficulty of incorporating cer- 

tain conventionally accepted notions. Nowhere is this tetter illustrated 

than in the problem of definlnc an energy-density for the gravitational 

field or, in more technical terms, a generator of infinitesimal space- 

time displacements.  If is not actually difficult to formulate the problem, 

or at any rate it is not difficult once an intrinsic coordinate system has 

been set up, as in the preceding section. A displacement 6T , 6u with 

respect to the intrinsic coordinates is described by a variation in the 

z of amount 

&za    = 2a6T + 6za. 5ua , (9..7.I) ,a 

with no accompanying variation in 6, J, or Sllv • The change in the 

explicit form of the action (9.6.8) which generates this variation is given by 

6S . -J^6za.ßd^z 

. .JdTJd\(T(0)<
0> 6T.(0) + T(0)Va * Ta

(0) ^.(ora^-b)' ^7.2) 

By the arguments at the end of Section 3 the variation which this change 

induces in an arbitrary local invariant * is expressible in the form 

&♦ = («,y(T(0f)
(0,)6T' + Ta,

(08)6ua') d3^)^^ + ^ , (9.7.3) 

in which it is assumed that the clocks have been adjusted in such a way that 

the hypersurface T = constant, through the point at which * is evaluated, 

21 is space-like. 
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The difficulty which now appears, however. Is that the extra term 

A» will not generally vanish even when « is one of the basic variables 

•y  v . This may be seen at once from the fact that both singly and 
'ab* a 
doubly differentiated propagation functions occur in the Poisson Brackets 

(9.6.67) et al which are to be used in the computation of the first term of 

(9.7.3).  In the process of passing from the Green's functions to the pro- 

pagation functions, as in E*. (9-3.58), the step function will get differen- 

tiated sufficiently so that extra terms will unavoidably appear.25^ Whether 

these extra terms can themselves be obtained through a simple process of 

taking a Poisson bracket with some appropriate quantity is unknown. The 

prospects for this, however, are not encouraging. The only case in. which 

it has so far been found possible to introduce an energy concept for the 

gravitational field is that in which flatness conditions at infinity are 

assumed (ACnowitt, Deser and Misner, i960). The total energy then acts as a 

"time" displacement generator for the canonical variables, but these variables 

' are physically nonlocal and depend, themselves, on the asynptotic conditions. 

The existence of a space-time displacement generator is, of course, 

not essential to the quantization program. For the rest of the chapter, in 

fact, we shall get along quite well without it.  There still remains the 

question, however, of the most suitable variables with which to work in 

developing the theory further and, in particular, in developing useful 

approximation methods. From the point of view of the logical structure of 

general relativity the primary variables would seem to be the components of 

the metric tensor, since these are the quantities which give direct and 

immediate information on the geometry of space-time. In the intrinsic 

frame, however, the metric components describe dynamical properties of 
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both the elastic medium and the gravitational field, simultaneously and in , 

a highly interlocking fashion. The »utual interference of the two systems 

is very obvious in Eqs. (9.6.67) f* 5i ^ wllich &11  the Propagation functions 

/-.     r n a   a .  *  .  m   .  etc. appear at once. More- Gabc«d' » Gabc» » Gab'c» » Gab' ' G' Ga(o)b»c« * WJM      m 

over, a direct observation of the metric components would require measurements 

by means of additional instruments similar to the medium itself (with its 

clocks) and subject to the same disturbances. But the reason for introducing 

the medium in the first place was precisely to use it as the primary stan- 

dard and to give it lasting utility -by making it sufficiently stiff. What 

we seek here are not the components of the metric tensor fcut a set of variables 

which are better at describing the gravitational field itself independently 

of the medium, as well as a set of instruments for measuring these variables 

having properties supplementing those of the medium. 

The propagation of the gravitational field itself is principally 

described by the functions Q^yW    To be sure, these functions depend to 

a certain extent on the elastic medium, just as the functions G^, and 

G depend to a certain extent on the gravitational field.  However, near 

the light cone the behavior of Gap7.8, is determined by the gravitational 

field alone.23 Because of the occurrence of derivatives of propagation 

functions in the Poisson brackets (9.6.67), etft. it would at first sight 

appear to be very difficult to obtain even an approximate separation of the 

mathematical description of the system into a gravitational part and a part 

referring to the medium. However, closer inspection shows that these 

derivatives occur in just the right way to make such a separation possible, 

provided the field satisfies a weakness condition which we may leave some- 

what vague for the moment but which will be made more precise presently. 

Ill 



This possibility stems from the fact that the terms involving the differen- 

tiated propagation functions in £0.8.(9.6.67) et al have their origin in 

the terms Bz   + bz0,„    contained in the invariant strain tensor appearing 

in the variations (9.6.6U),(9.6.65),(9.6.66). Consider now the Riemann 

tensor. A variation in the metric of amount 6z   + 8zß,a is mathematically 

identical to a coordinate transformation and therefore produces a variation 

in the Riemann tensor given by 

8IW   "   Roe76.e
6z   + VrS 5z€-a + W, 5Z% 

(9.7.'+) 

It will be observed that the Riemann tensor occurs as a factor in every term 

of this variation. Therefore if we compute Poisson brackets of components 

of the Riemann tensor in the intrinsic coordinate system, every term which 

Involves one of the propagation functions G^ . , Gar«5i /  ^Qot * G wil1 

also involve the Riemann tensor as a factor. In states for which the 

Riemann tensor differs only slightly from zero these terms become negligible, 

and only the propagation functions 0na   .-. are left. QfJ7 o 

It therefore appears that variables suitable for describing the 

gravitational field by itself are simply the components of the Riemann 

tensor, whenever these components are small. That the Tiemann tensor should 

thus enter so directly into the description of the gravitational field is, 

of course, not surprising. The presence or absence of a real gravitational 

field ia, in fact, determined by the value of the Riemann tensor.  If the 

Riemann tensor vanishes there is no gravitational field; if its components 

are small the gravitational field is "weak." Of course, certain components 

of the Riemann tensor may become large even for a "weak" field if 
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the coordinate system is badly chosen. But this circumstance can be 

avoided with a good stiff medium by assigning the labels u  and setting 

the clocks in an intelligent manner. The quantum fluctuations of the 

medium as well as oscillations induced by the "weak" gravitational field 

itself will then have negligible effect on the Riemann components. It is 

important to note that such oscillations produce only a relative (fractional) 

change in the components of the Riemann tensor whereas they produce an 

absolute change in the components of the metric tensor. This circumstance 

has its inmediate reflection in the linearized theory of gravitation, in 

which the Riemann tensor is a group invariant  although the "potentials" 

themselves are not. It suggests, moreover, that the linearized theory 

should provide a good starting point for approximation procedures, .and 

Indeed it will do so provided it is not used to settle global questions 

or vised indiscriminately in the ultra high energy domain where violent 

fluctuations occur and where the effect of the gravitational field on the 

light cone itself must be considered.  In short, it must be used with 

caution, and the full rigorous theory must always be kept in mind. 

The equations of the linearized theory, or what should more properly 

be called the "weak field approximation" when sources and hence nonlinearities 

are introduced, may be obtained from the results of the preceding sections 

by regarding both sources and fields as small disturbances in the vacuum. 

We begin with an empty flat space-time. Theny in given regions of interest, 

we introduce stiff elastic bodies of limited dimensions, each in a state of 

uniform rectilinear motion,  with oscillatory modes absent except for the 

zero point fluctuations, and each defining a local Minkowskian coordinate 

system with the aid of its own framework of syncnronized clocks. The 
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introduction of these todies produces tko results: (l) a change in the 

action functional for the system (previously a pure vanishing gravitational 

field), and (2) a deviation of space-time from flatness. Denoting the 

departure of the local metric from Mlnkovskian by -Sgy ,  we have, in the 

immediate vicinity of one of the elastic bodies, 

(iTr - ^VT)npX (6g(r+>pX + Bg^ - 66^ - BgTX,ffp) - - ^,  (9-7.5) 

which is just Eq.. (9.6.21) simplified for the present situation. Here we 

use Greek indices from the middle of the alphabet to refer to the intrinsic 

coordinate system defined by the body, instead of separating the equation 

into parts corresponding to the space and time indices a, b, etc., and 

(O). Similarly we shall replace the coordinate labels u  and T  by 

£  , not forgetting, however, their intrinsic origin. The etrees-enerar 

density in this system is, of course,  (T^v) - diag (p0, 0, 0, 0^. We 

may ignore the dynamics of the clocks except when we come to consider 

measurements of time. 

Next, we give to the gravitational field a "free" component in 

addition to that produced by the introduction of the elastic bodies, which 

may be described either semi-classically or in q-number terms, depending on 

the state in question.  If the field is sufficiently weak the superposition 

principle will hold and this extra component may be lumped together with 

the Bg^  of Eq.. (9.7.5).  It is to be understood that the superposition 

principle need hold only in the immediate vicinity of the elastic bodies 

where the intrinsic coordinate frames actually exist; it need not hold in 

the large. Thus the geometry of space-time may now depart widely from 

flatness over large distances. The condition for "weakness" of the field 
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and local validity of the superposition principle becomes slniply that the 

product of the Rieoann tensor vith the square of the linear dii^nsions of 

the elastic bodies shall be small conqpared with unity. Ofcis, in turn, 

in^oses a limitation on the bodies themselves, namely, the ratios of their 

masses to their linear dimensions must be small compared to one. 

The fact that space-time is now permitted to have an appreciable 

macroscopic curvature means that the word used to describe the bulk motion 

of the elastic bodies must be changed from "uniform" to "geodetic." 

Furthennore, the small scale curvature will induce internal oscillations. 

These oscillations are described by the homogeneous form of Eq. (9-6.20) 

which, in the present approximation takes the form 

PovV^z^ + 8g^T - |5g(JT^) ♦ t^ = 0, (9.7«6) 

in which the clock variables have been neglected, the condition (9.6.6U) 

^as been used, and the invariant strain tensor and interna! stress density 

are taken in the respective forms 

p.v 2 v H*v    v»li   n^v 

v       VOT t   = - c   s 
u. V-        CTT 

(9-7.7) 

(9-7-8) 

V 

Multiplying Eq. (9-7.6) by p^1 , differentiating with respect to x , 

symmetrizing the resulting expression in the indices ^ and v , and 

remembering that the derivatives of v^ vanish (uniform original motion), 

one gets . 

ex T. W(W - «Vv.' * I <»o-V..>.. * I "o-W- " 0'   (9-7-9> 
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where,  from Eqs.(B>7) and (B.8) of Appendix B, >•• 

■" 

BVVT    s   k (B6Uv»crT + 6Wv " 8V^v ■ ^v,^)' (9.7.10) 

Since the original space-time was assumed to he flat, expression (9.7.IO) 

really represents the full Riemann tensor, and the symbol 8 nay he 

removed from in front of the R    • Therefore, remembering the conditions 
(KTVT ' 

(9.5.77), as well as the fact that (v^) = (1,0,0,0) in the intrinsic frame, 

we may write the spatial components of Eq. (9.7.9) in the form 

«ab = Ra(0)b(0) " I ^o'Sicc^b " | ^o'^bec^a '       (9.7.11) 

This equation has been used by Weber (i960) as the basis of proposals for 

the direct experimental detection of gravitational waves. We shall also 

make important use of it in the analysis of the measurability of the 

gravitational field in the next section. 

It will now be convenient to rewrite the basic equations of the weak 

field approximation in several alternative forms.  In view of Eq. (9.7.10) 

equation (9«7»5) can be written 

R^V . 1 ^ . . 1 ^  %v    m    ^^a , R . ^ ,       (9.7.12) 

which is the linearized Einstein equation.  It can also be written 

R   = _ i(T  - ii) T), (9.7.13) 

T = T ^  . (9-7.1M 

From the linearized Bianchi identities 

R + R + R so, (9.7.15) 
tXVCTTyp \XVTpf<J (JivpajT » w    1      ^ 
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it follows that 

(R^-I^Hv 

which imposes the lowest order condition 

^ 
fV 

(9.7.16) 

(9.7.17 

on the stress-energy density. This is, of course, trivially satisfied for 

(■]fv) = diag (p , 0, 0, 0) in view of the (proper) time independence of PQ- 

The nhove equations are also applicable, however, to situations in which the 

elastic bodies are subjected to sudden impulses arising from internal devices which 

are Introduced for the purposes of measuring relative velocities or rates of strain 

(as in the next section), provided the stress-energy of these additional devices is 

itself taken into account. By repeated use of the Bianchi identities as well as 

26 
Eq. (9,7.13) one obtains the important equation 

D\ VCTT s R VlVO"T,p 

~ , .  - i Ti T)   + (T - ^ n T) i (T . VT VT  2    vr    »M.C7 

(T HT 
i T) T) 2 VT * 

T)    - fT  - — TI  T) (9.7.18) 

which enables the source-associated components of the Riemann tensor to be ob- 

tained directly from the stress-energy distribution with the aid of the familiar 

relativlstic Green»s functions D* massleee fields, which satisfy the equation 

rVtx - x«) = - B(x - x») . (9-7-19) 

The use of these Green's functions is, of course, valid only in local regions. 
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The canponentB of the Riemann tensor are conveniently separated into 

two sets, analogous respectively to the electric and magnetic coniponents of 

the electromagnetic tensor of Maxwell's theory: 

*ah ■ Ra(0)h(0) ' (9-7-20) 

Hah S I €acdRcd^0) • (9-7-2l) 

The 3-tensor E ^ is obviously symmetric. Its trace is found, with the aid 

of Eq. (9.7.13), to be 

E 'aa 
i fT  ^  x + T  ). (9.7.22) H  U(0)(0)   aa7* 

H  . on the other hand, has vanishing trace but is not symmetric when 
ab ' 
moving masses are present. Its antisymmetric part is given by 

l^-v - -iw,o). • (9-7-23)    1 
The algebraic identities satisfied by the Riemann tensor may be used to show 

that its components can be re-expressed in terms of Eab and Hab by the 

equations 

Ra(0)b(0)     =    Eab    > Rcdb(0)    =    £cdaHab' ^ 
> (9-7-2.10 

;abcd    =    "  £abe€cdfi:'ef ''■ 2 ''abe^cdf'cf *) R--^.^ = - «-v-««.«.fE*f + Ö ea-he€cdfJ  • 

J S 4 T„. - i 6„v(T/nUM + T  )  • (9.7.25) 
ab S 2 Tab " TT öab^(0)(0) ' "cc 

Furthermore, using these equations together with the Bianchi identities, 

and introducing dyadic notation, one may show that E, and ^  satisfy the 

following analogs of Maxwell's equations: 
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AA^            /W» M^         M» 

V  x  E +  & ■    0          ., 

V   -  H =    0           , 
»V*- »VN. 

VxH-E=-J       , 

the tilde denoting the transposed dyadic.    Fincaiy,  the second order equations 

(9.7.18) may'be.rewritten in the forms 

D\t    ■    - I I*"* - I V%  <T(0)(0) * I «.a. - ^0).» " *b(0),al '^'^ 

0\b   -   - I Vdl(*t= - 5 ^U " Tc(o),dtl    • (9-7-2e) 

It is of interest to note that Eqs. (9-7.11) and (9-7-27) agree with the 

Newtonian theory in the static limit and may. Indeed, he used to fix the size 

of the units through comparison with experiment.  In the static limit, with 

'r(o)(o) = po » Eq-'  (9-T'27) l5ecomes 

V\h - -U,ah - ^&) 

In the Newtonian theory, on the other hand, we have a scalar potential <t> 

satisfying 

V2« - W3p0 - ^PQ  » (9-7-30) 

in terms of which the equatioh_of motion of the constituent particles of a 

medium may he expressed; 

6V     -    . #      - Pn^t ^ fc    - (9-7-31) oa ^a        0       ab fb 

Introducing the Newtonian strain tensor 

s v. - ^ (6z >. + Bz>. J ' (9-7-32) ab    2   a^b    D»a 
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we are therefore led to Eq.   (9.7.11), provided we make the correspondence 

Eab    **   " Sato      ' (9.7.33) 

in agreement with Eqs. (9.7.29) and (9-7.30). 

We may also note that only the 3-tensor E ,, and not H. }   has thus 

far appeared in the equations which determine the effect of the curvature 

of space-time on bodies which ocw^py space-time. This is because we have 

confined our attention to non-rotating bodies.  It has been shown by 

Papapetrou (1951) and Pirani (I956) that when spin is introduced, the 

3-tensor H .. enters directly into the law of force. The dynamical equations 
ab 

which these authors give for a particle of mass m and spin angular momentum 

tensor 2^ satisfying 

Z^    =    -2:^    , Z^f    =    0    , (9.7.310 

are 

mza    =    ^V + I ^reA76    ' (9'7'35) 

g* = (Ea zP. d3 k*)??    . (9.7.36) 
7 7 

Here the dot denotes covariant proper time differentiation.  That is, if the 

particle is imagined to belong to an ensemble defining a velocity field v , 

then 

va S za S öza/ÖT ,   "za    S vPva.ß , 2* S ^Z^,7 ,  etc.  (9.7.37) 

Equation (9.7.36) expresses the condition that the spin propagate along the 

world-line of the particle in as parallel a fashion as is consistent with 

its remaining purely spatial [as demanded by condition (9»7.31+)] and 
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therefore gives simply the geaercl relativistic Thomas precession. 

Equation (9.7.36) yields a deviation from geodetic motion of the particle 

itself. The spin equation has "been used by Schiff (i960) as the basis of 

proposals for measuring the general relativistic corrections to the ordinary 

•        special relativistic Thomas precession. The particle equation, on the ether 

hand, will play a fundamental role in the next section in the analysis of 

the measurability of HaV In Appendix D it is shown how both equations axe 

derivable from a single momentum-energy conservation law. 

The commutation relations for the 3-tensors E^ and Hab can be ob- 

tained directly from the commutation relations for the components of the 

linearized Riemann tensor, which, since only the propagation functions 

G  . , are now involved, may be computed as if the 5K   satisfied the 
nvcr'T1 ~        ** ^ 

commutation relations 

I 

' 

:. 

[6g  . 5g . , ] = i G  .,.  . (9-7.38) 

In the weak field approximation the Green's functions from which these 

propagation functions are formed satisfy the equation [cf. Eq.. (9.6.55)] 

I (rnVT - I n^V^aV^,,. - - 6^pU. ,     (9.7-39) 

of which the solutions is 

o*  ..-(11  +T.n  - 1 VJD^X"- «*)-      (9-7-to) ^lva,T, ^ VOVT       VT'VCT       "uv'crr 

By a straightforward computation,  which makes use of Eqs.   (9.7.10)  and 

(9.7.I9),   one finds 

fEab '  ^«d«1    "     tHab*  ec'd'] 

-    i (^o/bd + ^od^bc - ^abO^V -  x'), (9.7^1) 
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.^ie ,(BT 6*  ♦ 6T **      - 6T .6* ) JD  f(x - x«), 4   cefv ae bd    ad be    ab ed v >rv      ' 
(9-7-^2) 

Where 6T .  is the transverse-field projection operator: 
ab 

6T      =, 6 ^ v-2     a (9.7.^3) 
ab     **        &? i? 

and where 

D * D+ - D" , a^x - «*)    = 0 '      (9-7-^) 

and H 5ee have the general forms 
ab 

+ h.c., (9.7.^5) 

3 .,  u 

+ h. c.    , (9-7.^) 

where    (k^)  -   (k,  k0)  ,     k0= k sr |k|,   and where    e^,  e. J^    are the 
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". 
Since the gravitational propagation functions G^^,^.,  are uncoupled to 

the matter propagation functions G , and G in the weak field approximation, 

the commutation relations (9.7.1a) and(9.T.)+2) are also satisfied by the 

"free" components of E   and H   which remain after the retarded (or advanc- 

ed) solutions of Eqe.  (9-7.27) and (9-7.28) have been subtracted out. A study     - [ 

of these free components lends to the concept of gravitational quanta or 

gravitons.  From the homogBneous forms of Eqs. (9.7-26) and the fact that the 

free components of E ,  and H .  are symmetric and have vanishing trace, 

_ „free 
it is not at' all difficult to see that the Fourier decomposltxons of E^ 
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Fig. 9-2. Quadxupole strain induced in a spherical object by a 
plane gravitational vave propagating into the page, 
for the two polarization states, I and II . 
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mutually orthoßonal unit vectors of I«. (9.5.») «*o*e^ for definiteness, 

in a "right handed" fashion so that 

5ix^ = eiJk2k (9-7.1*?) 

The "amplitudes" aI , •„ , which are functions of k, define "polarization- 

states of their respective plane waves. The existence of two such states 

corresponds to the existence of two dynamical degrees of freedom per point u 

(here x ) which was mentioned at the end of Section 6. From  the fact that 

e« o»  - e« e»  = ene^ + e e,  = e X (e e - e f )   ,  N ,2 1* 1  ' 2*- 2    ■«I "2  •-2-1    »5   ■"■L ■L  -2*2 
(9.7.^) 

where 
1 .1 

^'l s 2"2(e1 + e2)  ,  e»2 ■ S 2 (-^ + ^ , (9-7-^9) 

it follows that the two states of polarization are obtainable from one 

another hy rotation through U5* • Referring to Eq. (9.7-1^ it is easy 

to see the effect which a polarized plane gravitational wave has on the 

strain tensor of a medium with which it interacts. This effect is schema- 

tically indicated in Fig. ( 9-2) for a plane wave propagating into the page. 

The wave induces an oscillating transverse quadrupole moment in an otherwise 

spherically symmetric object. From the figure it is clear that a rotation 

through 90° yields again the same state of polarization. 

Using the Fourier decomposition of the function D(x - x«), namely, 

- -i[(2«)'5/|eilV(^"Xnl)(dVk0) - *• «.] ,       (9.7.50) 

125 



together with the Identity 

(•ill " AaSgW^l«! " .e2?2)cd+ (Sl^ + Ä2fi)»b<*l«2 + Ml'cd ^ 

S 8T 5TV, + 8
T ,6TV - 8T y A    , (9.7.51)     j ac bd    ad be    ab od ' f 

where 

8Tab s (.^l+^2)ab = 
6ab-kak"2kb'       (9.7.52) 

it is easily verified that the commutation relations (9.7.4l) and O-l-h^s) 

are satisfied if and only if 

[a (k) , aTt(k»)] =  [aTT(k) , a tC*')] = 8(k - k») ,      (9-7.55) 

while the commutators of all other pairs of ajjiplitudes vanish. The 

amplitudes a , a , aT't', aTTt are recognized as graviton annihilation and 

creation operators respectively. 

Creation and annihilation operators for states of definite spin are 

obtained from the amplitudes a , a , etc. by the unitary transformation: 

_1 

a± = z2 {aI + ±  a^) . (9.7.5^) 

Under a rotation in the positive direction through an infinitesimal 

angle 60 about the vector e_ , the vectors e.  suffer the changes 

Be. = e x e So , (9.7.55) 

and hence 

SfeTe, - e„e„) = 2 (e^e. + e^e, )6i> , "N 

6(6,6^ + e^e, ) = - 2 (e.e. - etz^hs  .   ) 
(9.7.56) 
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Therefore, since 

[s, aj] = 2 1 »JJ ,     [s, a^] = - 2 1 aI ,    (9.7.57) 

where 

B s 2 (a+ta+ - a_ta_) , (9.7-58) 

it follows that the spin operator must be given by 

5 = 8 ^ > (9.7.59) 

for it acts as the generator of infinitesimal rotations according to the 

fundamental law for angular momentum: 

[0-, , Efree(k)] = ISE^6^ , 
3  ~ ^ (9.7.60) 

E^ree(l£) and Hfree(l5;) being the total Fourier amplitudes of tHe gravitational 

field. Since gravitational waves are purely transverse it is possible to 

generate rotations only about the vector e , and hence the spin is restricted 

to be parallel or antiparallel to e .  The factor 2 in Eq. (3.7.58) 

identifies the gravitational field as a spin-2 field. 

The amplitudes a , a , etc. may be used to define a "total" energy 

and momentum for the linearized free gravitational field: 

H s rk0(a:itaI + aIItaII) d
5k , (9.7.61) 

P ■ rk(aI''a1 + a^a^) d5k  . (9.7.62) 
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It is to be emphasized, however, that the validity of these definitions is 

strictly limited to states in which the field is everwhere weak Inside a 

macroscopically flat region of interest and effectively vanishes for a 

considerable distance outside. Furthermore, although the definitions are 

then applicable to the total energy and momentum inside the region in 

question [by imposing periodic boundary conditions on the region and replacing 

the integrals in (9.7.61) and (9.7.62) by sums] it is on the other hand, 

impossible to introduce the concept of a local distribution of energy and 

momentum which is group-invariant. For, although the amplitudes •_, 

free 
a ,. etc. are Fourier transforms of the group-invariants E     and 

IT^66, and hence permit H  and P to be re-expressed as integrals over 

all space, nevertheless, because of the necessity of inverting the factor 

k2 which appears in the Integrands of expressions (9«7« ^5) and (9«7«1^)» t116 

integrands of the spatial integrals which would normally be identified as 

the energy and momentum densities respectively cannot be expressed in 

texms of the local geometry of space-time but become non-local functionals 

_ „free   , TTfree of E     and IT 

The only strictly local quantities presently known which satisfy a 

field-equation-dependent differential conservation law analogous to the 

laws of conservation of energy and momentum in Lorentz invariant theories 

are the components of a fourth rank tensor discovered by Bel (1959) aud 

Robinson (1959).  Since the conservation law which it satisfies is completely 

covarlant and independent of the weak-field approximation this tensor is of 

undoubted importance, although its physical significance is not yet well 

understood in concrete terms. 

1 

; 
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(9.3) Measurablllty of the sravltatlopal field. 

It has teen anphasized by Bohr and Rosenfeld (1955) that the classical 

description of a field in terms of coniponents (in our case, Eab and Hab) 

at each space-time point becomes, in the quantum theory, an idealization 

having only a formal applicability. Since the commutators of the quantized 

field components involve singular functions (e.g., D(x - x*) and its 

derivatives), unambiguous statements can be deduced from the formalism only 

for averages of the field components over finite space-time regions.  Our 

first problem will be to find suitable devices for measuring such field 

averages and to examine the kinds of averages to which these devices lead. 

We begin with the description of a convenient way to measure 

(conceptually) an average of the component B.,, noting that the same 

measurement repeated in a sufficient number of differently oriented quasi- 

Cartesian coordinate systems that is to say, with the measurement device 

itself placed in different orientations suffices for the determination of 

similar averages of all the components E^.    Thus, if the measurement is 

performed in a coordinate system of which the x'-axis has direction cosines 

a,, a , cc with respect to the original system, then an average is obtained 

for the quantity a aE .  in the original system.  It is easy to see that 

averages of all the E ,  in the original system may thereby be inferred by 

27 
making six appropriate different choices of the a . 

For the measurement of a space-time average of E^ we must insert 

some kind of a "test body" into the field. The simplest body which we can 

use for this purpose is the elastic medium itself, which, together with its 

clocks, was introduced originally for the purpose of defining a local 

coordinate system. The spatial boundaries of the medium may be taken to 
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coincide with those of the averaging domain, since the coordinate system Is 

needed only there and nowhere else.  The quasi-rlgldity of the medium., 

together with the weak-field situation, which must be assumed, insures that 

28 
the coordinate system remains permanently quasi-Minkowsklan.   For simplicity 

the spatial volume occupied by the medium will be taken as a quasi-cube 

having sides of unstrained length L oriented along the coordinate axes. 

At a certain Instant marking the temporal beginning of the space-time 

averaging domain the internal constitution of the medium is abruptly and 

simultaneously ( as determined by the clocks) altered throughout, in such 

a way that a siiaple application of Eq,. (9.7.II) can then be made to obtain a 

determination of the average walue of E   over the medium and over the 

length of time during which the medium retains its altered constitution. 

The nature of the most suitable alteration will now be examined. 

We first consider an alteration which is physically Inadmissible, but 

which will nevertheless lead us to a correct analysis. We imagine that the 

elastic moduli c . . suddenly become modified in such a way that the 

medium no longer supports short wavelength oscillations but becomes what 

we may call strain-rigid that Is, the only Internal motion which it can 

execute is a uniform strain in the x^-dlrectlon, which is Itself unhindered 

by elastic restoring forces.  This situation is somewhat picturesquely 

illustrated by the device shown in Fig. (9-3).  Its physical inadmlssability 

resides, of course, in the fact that because of the finite propagation 

speed of all forces a body can no more be strain-rigid than it can be 

truly rigid.  Leaving aside this defect for the moment, however, let us see 

how such a hypothethlcal device mifcht be used. Let us assume that the 

intrinsic coordinate system defined by the test body has been adjusted so 
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Fiß-  9-5-     A strain-rigid test body. 



-that at the initial instant    g11    is equal to unity, to an accuracy limited 

only by the  zero point oscillations.     Lengths in the x -direction are thus 

read off directly from the coordinate    x     at this instant.    At subsequent 

Instants the component particles of the test body will have suffered dis- 
a        29 placements 6z  given by 

8za = 8ai8iixl , (9.8.1) 

where s-.-,  is the diagonal component of the (now uniform) strain tensor in 

■the- x -direction and where the origin of coordinates is chosen at the center 

of the body.' Assuming uniform mass density p0 we have, from Eq. (9.7.II), 

En - Pn"1^...-,  , (9.8.2) sll = ^11 - ^0 ula.al * 

which expresses the temporal behavior of the strain resulting from the 

action of the space-time curvature and the internal stresses. We do not, 

of course, know in detail what the internal stresses are. But we know that 

■they must adjust themselves in such a way that the body as a whole under- 

goes strain-rigid motion. The forces involved are evidently forces of 

constraint which can do no net work in a virtual displacement. This condition 

may be expressed in the form 

0 ■ /tab,b8(eza)d5^=  ^ll^lbjb*1^ (9-8-5) 

V V 
where V(=Ir ) denotes the volume occupied by the test body. From this it 

follows, "through an integration by parts, that 

/(x1 + i L)(i L - x
1) tla>al d^ - 2jx1W ^ - 0 ,        (9.8.10 

V V 

and hence 
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V  - E (9.8-5) sll   TJL ' K 

Ell s   6 L
-5 /(x1 + i L)(| L - x

1) E,, cl5x. (9.8.6) 

The quantity which the strain-rigid test body measures is therefore seen to 

te a weighted average of the field component E^ over the volume occupied 

hy the test hody.  The weighting factor (x1 + i L)(- L - x ) is parabolic, 

going to zero at the extremities of the body in the x -direction. 

To test the formalism of the quantum theory of geometry by means of 

measurements we nust assume that the apparatus (in this case the test body) 

obeys the Uncertainty Principle. Poisson brackets for a strain-rigid test 

body can be obtained by the general Green» s-function techniques outlined in 

the early sections of this chapter. Conventional methods, however, suffice 

for this simple example. Since the internal forces are pure constraints the 

Lagrangian is just the total kinetic energy: 

L . l/poCi*)»^ i^cl^ . ('•8•7, 

V 

M is the total mass of the test body. The variable conjugate to the strain, 

which we may call the strain momentum, is given by 

„ = bL/bs^    - ^ML2^! • (9.8.8) 

The accuracy of a simultaneous fixing of B^ and it is limited by the 

uncertainty relation 

As^A« ~ 1 . (9.8-9) 

A measurement of n    at the beginning and end of a time interval T yields 

a space-time average of E.,.,. Denoting the measured values by  n« and n" 
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respectively,  we have :: i 

„«  - «•  - Jg ML2^ dx0 = Jg ML2!^ , (9.8.10) 

Sll 3 T'1i ^ll ^ s 6 L'5,r"1/ (xl + i L)(| L " x1)E11d\ .  (9.8.II) 
T VT 

Equation (9,8.10) may be solved to express ft^ in terms of the "experi- 

mental data" K» and n" . The limitation which the uncertainty relation 

(9-8.9) imposes on the accuracy of this measurement is evidently given by 

al.   .      L
12       , (9.8.12) 

■"■   MLT: äS11 

which, for every value of As11 no matter how small, can be made arbitrarily 

small by the choice of a sufficiently large value of M .   On the other 

hand, M is limited by the weak-field condition 

M « L , (9.8.15) 

and here we encounter a situation which has no analog in the measurement 

problem of electrodynamics which Bohr and Rosenfeld considered.  It turns out, 

as a result of the complete analysis of the sources of uncertainty in the 

measurement of E,, which are present in addition to that expressed by 

(9.8.12), that this situation has a more fundamental significance thaft 

the mere breakdown of an approximation method.  We now examine these 

additional sources of uncertainty. 

To begin with it is necessary to point out that the boundary of the 

space-time averaging domain is not defined with infinite precision by the 

experimental arrangement.  In addition to the zero point oscillations 

there are two sources of uncertainty in this boundary:  (l) an uncertainty 
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in the range of the time Interval T due to the fact that the measurements 

of the strain momenta n* and n" actually occupy finite time Intervals 

At;  (2) an uncertainty in the spatial boundaries due to the strain staffered 

by the test body during the measurement process* As for the uncertainty in 

time it is clear that ve must assume 

At « T (9.8.14) 

if Eq. (9.8.I0) is to be at all usable. On the other hand, it must be 

borne in mind that if At is taken too small, the uncertainty in the total 

mass of the clocks will 'become great enough to violate the weak-field 

condition on which Eq. (9.8.ICJ is based. It will turn out that these 

conflicting, requirements can be balanced only if a fundamental limitation 

is imposed on the size of allowable measurement domains. 

The uncertainty in the spatial boundaries will remain within tolerable 

limits only if s-^ remains small compared to unity throughout the interval 

T • From Eq. (9.8.5) this is seen to impose the requirement 

E11T <<    1 * (9.8.15) 

Following Bohr and Rosenfeld it will be convenient to confine our attention 

to the case 

T < L (9.8.16) 

which permits an approximate approach to a limiting situation analogous to 

non-relativistic particle mechanics, in which a strict temporal order can 

be assigned to measurement sequences. Equation (9.8.15) then becomes 

simply a special case of the general weak field condition 
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RL2 « 1 (9-8.17) 

where R denotes the magnitude of a typical component of the Riemann tensor. 

In the electromagnetic measurement problem Bohr and Rosenfeld kept the spatial 

boundary vithln tolerable limits by choosing the mass of the test body sufficiently 

large.  In the present problem the same result is achieved by the weak field 

condition, whereas the mass now plays the role previously played by the charge. 

This is, of course, quite reasonable in view of the physical significance of 

mass in the theory of gravitation. It will become evident, furthermore, that 

the lack of a freely adjustable charge-to-mass ratio, which has sometimes been 

predicted as an obstable to the measurability analysis for gravitational fields 

(see, e.g., Rosenfeld, 1957), In fact poses no obstacle other than a limitation 

on the smallness of allowable measurement domains.. 

The magnitude of the errors Introduced by the imprecision of the 

boundaries of the space-time averaging domain is proportional to the absolute 

magnitude of EL,  itself, and can surpass all limits as E11  becomes arbitra- 

rily large. As Bohr and Rosenfeld have erapraphasized, however, this circumstance 

corresponds only to the general limitation on all physical measurements, whereby 

a knowledge of the order of magnitude of the effect to be expected is always 

necessary for the choice of appropriate measuring instruments. In the measur- 

ability problem we are interested in fields which are so weak as to place us 

clearly in the quantum domain. Such fields are those for which fluctuation 

phenomena become significant. The strength of the fluctuations involved in 

a given measurement is effectively determined by the magnitude of the commutator 

taken between a typical pair of field quantities similar to the field quantity 

teing measure.  A typical situation. 
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IE * , S11) = ii/AJA. aA^'VX1!") "E11!-'' 

- COM * «Vto - ^Ä"1«« - «■>•     C-8-18' 

1 

and the one which must be studied in carrying out the complete analysis of 

the measurability problem, involves the measurement of two field components 

averaged respectively over two overlapping space-time domains. Here the 

test bodies themselves must be assumed to interpenetrate one another without 

interaction, although prior to their respective time intervals T they should 

be bound firmly together so that they have no relative velocity at the 

beginning of the measurement. A local quasi-Cartesian coordinate system 

may be introduced which embraces both bodies at once, or else, according 

to convenience, two such systems may be introduced, each centered on one of 

the bodies and oriented parallel to its edges, the two bodies heing assumed 

to be quasi-cubes of comparable volume. The bodies will be distinguished by 

the labels I and II . If the direction cosines of the x -axes of the 

two bodies with respect to the common coordinate system are aa  and aa 

respectively, then the commutator of the field averages measured by the 

two bodies over their respective time intervals is given by 

I 

Here the subscripts 11 have been dropped on the E , and weight functions 

W„   and W„    appropriate to the measurement of the field components 

1   for the two bodies respectively have been introduced.  In a coordinate 
11 

system centered on one of the test bodies and oriented with it, the weight 

function is given by 

WE(x) = 6 L'W + | L)(| L - x1)e(x1 + | L)e(| L - x1)0(x2 + |L)e(|L - x2) 

x e(x3 ^i L)e(| L - x3)e(x0)e(T - x0) , (9.8-19) 
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ö denoting, as usual, the step function, and the origin of time teing taken 

at the beginning of the measurement interval. 

By introducing the explicit form (9.7.1,5) of the transverse-field projöi'tilon 

operator, performing a number of integrations by parts, making use of the 

wave equation (9*7«^) satisfied by D(x - x*), and finally splitting D(x - x*) 

into its advanced and retarded parts while taking note of the reciprocity 

relations satisfied by these parts, it is not hard to show that Eq.(9.8.l8) 

may be rewritten in the form 

[l1, E11] = i (A1'11 - A11'1)  , (9.8.20) 

where 

A1'11 bd iJAjA« W^x«) D-(x«-x) «AVV^^aA 

" ^bi^OOOoU) - k ^cVjbdOO^ + &abWEI,cWx) 

+ »cdV^abOO^J + ^abcd^) ] ' (9.8.21) 

$.he verification of the uncertainty relation 

AE
1
 /J11 |AI,II . Aii,i| (9.8.22) 

which follows from Eq, (9.8c20) will be the main task of this section. 

The magnitued of the quantity |A *  - A * | in the case of partial 

overlap of the space-time regions VJT,. and V-JTj-. may be estimated by 

inserting the Fourier decomposition (93f4$0) of the propagation function 

into (9.8.I8) and performing the space-time integrals first and the momentum 

integration last. Assuming Lj ~ L  ~ L and T ~ T-^. ~ T one obtains, 

for the square root of this estimate, the critical field strength 

I 
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L"^ when  L ~ T j 
Rcrit "SI (     (9-8-S) 

2 m 2 i 
L ^ T c     when  L »T j 

below which quantum phenomena become important. The value 

R   ■ L"^ being always the smaller of the two given in (9«8«^)* we shall 

be safe in using it in all cases. The criterion of accuracy for testing the 

formalism in the quantum domain is then 

A 1 - X Rcrit - XL"3 (9.8.24) 

where 

\ « 1 (9-8.25) 

for all sources of uncertainty AE,, . 

The critical field strength R     represents the magnitude of the 

quantum fluctuations.  These fluctuations must themselves satisfy the weak- 

field condition (9.8.17) if the experimental arrangement is to have any 

utility. From this it follows that we must have 

L » 1 . (9-8.26) 

A still more stringent limitation is, in fact, required if complete consistency 

between formalism and measurement is to be achieved.  FOIJ returning to 

Eq. (9.8.12) and taking note of the necessary restriction 

AS^L « 1 , (9-8.27) 

we see that the mass of the test body must satisfy 

M~  5- S8  " 12 £ s-i»>l • (9.8.28) 
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if an accuracy is to be attained sufficient to test the formalism in the 

quantum domain. From condition (9.Ö.I3) It therefore follows that 

L »» 1 . (9.8.29) 

We note that if experimentally known elementary particles (masses between 

10"22 and 13"l8 ) are used in the construction of the test body, condition 

(9.8.28) implies that a very large number will be needed. This, of course, 

fits well with the representation of the test body as a continuous medium. 

Furthermore, it underscores, as in the case of electrodynamics, the 

inappropriateness of attempts to use individual point particles as test 

bodies in making accurate field measurements (Landau and Pelerls, 1951; 

Anderson, 195^; Salecker, 1957).  Indeed, it is only by using extended test 

bodies that uncertainties due to the forces of radiation reaction may be 

ignored.  In the present example these uncertainties arise from uncertainties 

in the stress-energy density of amount 

AT ~ ML"?As 11 
(9.8,50) 

[see also Eqa,  (9.8.59), (9-8.60) and (9.8.65)] which themselves arise from 

the process of measuring the initial and final values,  it« and n" , of 

the strain momentum during the time intervals At . During such time intervals 

the uncertainty (9.8.50) gives rise to an uncertainty in the Riemann tensor 

of comparable magnitude, which in turn produces an additional uncertainty in 

«• and jt" beyond that determined by the uncertainty relation (9.8.9), 

namely 

5« - i- ML2 At AT ~ ig M L' At ^H * 

157 

(9.8.51) 



This additional uncertainty may be neglected In comparison with An by 

choosing At so small that 

1 » 8jt/An ~ vi M2!,"1 At(As , )2 
12 —\—JJL^ 

~ 12 L"V2 At(Z^11)"
2 ~ 12 ^ J f^ . (9.8.32) 

We have already pointed out, however, that At must not be chosen so small 

that the mass M violates the weak-field condition (9.8.15).  It is easy 

to see that this caution again leads to the limitation (9.8.29) on the 

smallness of allowable measurement domains. 

Before proceeding to the verification of the uncertainty relation 

(9.8.22) it is still necessary to investigate the physical means by which 

the strain momentum is measured and the sources of error to which the pro- 

cedures involved unavoidably give rise.  In order to do this it will first of 

all be necessary to drop the untenable original assumption of strain-rigidity 

for the test body.  It is apparent from the foregoing discussion that it is 

only the degree of unoontrollability As,, in the strain which need be 

uniform. This, however, can be arranged by a prescription for the measurement 

process which does no violence to the relativity principle. At the beginning 

of the interval T,  instead of adjusting the elastic moduli so as to insure 

strain-rigidity we simply let them all fall abruptly to zero.  One may 

imagine this change to be brought about by a loosening of the coupling 

between the consituent particles, which transforms the medium into an 

ensemble of free particles. Because of the retardation of forces the actual 

decoupling process must occupy an interval of time at least as big as the 

interparticle spacing £  .  If the original elastic moduli are chosen big 

enough to make the sound velocities approach the velocity of light this time 
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i" interval will be of the order of the period of the short vavelength (~i) 

oscillations of the constituent particles. The time intervals At for the 

subsequent measurements of the strain momentum may also be taken of comparable 

magnitude. 

The zero point coupling energy, which was shown in Section 5 to be small 

compared to the total mass, does not, of course, simply disappear, but must 

be accounted for.  It may be imagined as temporarily stored within the 

constituent particles themselves. However, it is not necessary to be precise 

about the mechanism for accomplishing this. The lack of a detail prescription 

in this regard is not to be understood as implying any fundamental uncertainty 

in the Riemann tensor arising from this source.  It is enough to know that 

such a prescription is in principle possible. 

The measurement of the strain momentum is most easily carried out by a 

simple generalization of the Doppler shift technique employed by Bohr and 

Rosenfeld. At a given moment prior to the interval T a light source which 

is located within a relatively small region at the center of the test body, 

and which may itself be regarded as a component of the test body, emits a 

bundle of electromagnetic radiation of duration no greater than At.  By 

means of suitably placed mirrors portions of this radiation are progressively 

delayed—for example, by temporary trapping in a central slab at right 

angles to the x-  axis so that the radiation bundle becomes an "extended 

projectile" which strikes all portions of the test body at the same instant 

immediately after the coupling between the constituent particles is removed. 

The state of the radiation bundle just prior to impact with the test body 

may be described in terms of photon density, which is arranged so as to be 

proportional to the magnitude of the coordinate x1 and independent of 
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2        ^ 1 x  and yr y     with the photons themselves propagating parallel to the x 

axis, in the positive direction for positive values of x and in the 

negative direction for negative values of x . By means of mirrors 

attached to the constituent particles of the test body the radiation bundle, 

as a result of the impact, is reflected back to the central source where it 

is analyzed spectrosccpically for a determination of the Doppler shift. 

Although the radiation bundle is here described in terms of photons it is 

to be emphasized that these photons are emitted coherently, and there is 

never any question of measurinü the momenta (relative to the central plane) 

of the constituent particles individually.  Only the total strain momentum 

is measured, for only then can the minimum uncertainties expressed by 

(9.8.9) be achieved. Under these circumstances the uncertainty AE in the 

total energy of the radiation bundle will satisfy the relation 

: 

AE At (9-8-53) 

The coherence  of the emission process furthermore implies that the quantity 

AE    also represents the uncertainty in the total mass of the clocks which 

are needed to time the emission process.     In fact,  the emission process may 

be regarded as a transfer of energy from the clocks to the radiation field. 

Similarly the  subsequent removal of the interparticle coupling may be 

regarded as a  coherent transfer of energy from the coupling mechanisms to 

the clocks,   having a comparable uncertainty in total magnitude. 

Since the  strain is no longer required to be uniform during the interval 

T    the definition (9.8.8)  of the strain momentum must be modified.    The 

appropriate generalization is simply 
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„ 3 Yt^rtlr (9*8-5J|) 
T 

where the summation is extended over the constituent particles of the test 

tody  x1  and p,  heing the x -components of position and momentum of the 

T th particle respectively.  It is easy to see that this definition reduces 

to (9.8.8) when the strain is uniform, with plT = m x Jt^,    To see, further- 

more, that Eq. (9.8.10) retains its validity it is only necessary to note 

that we now have s^ = Bz^^ 1 and that Eq.. (9.8.2) is replaced "by 

bzlfl    = E^  . (9.8.55) 

Hence 

Ell 
T 

= 12 M" 

Ell - 6 L"5/(X1 + 5 L)(^ L " Xl) 5'Z*1'1 ^ 
V 

= 12 I" 5 f x1 S*^ d5x , (9.8.56) 

V 
= I"1 /E^ dx0 = 12 M-W1 Jp0 x

1(&*z1" - 64^) d5^ 
'^ V 

T 

= 12M-1L-V1(rt" - «•)• (9-8.57) 

In order to verify that the prescribed radiation bundle actually measures 

the strain momentum (9.8.3U) it is necessary to compute the exchange of energy 

and momentum between photons and particles. We assume that all the photons 

have as nearly as possible the same angular frequency CD- . Their actual 

frequencies a)' will generally differ from «UQ by amounts of order AE 

Hvl 
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satisfying condition (9»8»55)« Because of their coherence the uncertainty 
as has already been mentioned,also 

in their total energy Will, A *• e«!11811 to AE .  In the discussion which 

immediately follows we use the prime and double prime to denote respectively 

"before" and "after" the collision between the particles and photons. For 

positive values of x   we have 

V ((ü» + co"), (9-808) 

I «"1(PlT
,,a - P^'2) = £(a>' - 03"), (9.8.59) 

n 
T 

where    n      is the numher of photons striking the    T th   particle and where 
T 

the velocities imparted to the particles are assumed to be nonrelativistic. 

The latter assumption will be valid provided 

n ^ « m , (9.8. to) 
TU ' 

which requires that the total photon energy shall remain small compared to 

the rest energy of the test body. From Eqs. (9.8.58) and (9'8.59) one 

obtains 

I (CD« - Cü") 

PIT'  
=m 

n
T 

S    (CD« + (iT) 

iV (o)» +00") , (9-8.41) 

n 
T 

^T 

and for negative values of x   the same expression is obtained with the 

opposite sign. The cnndition (9.8. to) insures that the mean frequency CD0 

of the radiation bundle will be large compared to the Doppler shifts a)' - tu". 
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If it is also taken large conqpared to the frequency spread ^E we may 

write, to good approximation, 

| m (n^)-1^ («• - a)") - n^0 ,   (x1T > 0)    (9.8As) 
PIT

1 

n
T 

an3 "hence 

,. = ^|m (n^rV^y (co« - co") -^ l^jn^.  (9.8.43) 
T nT T 

Since n  is assumed to be proportional to  |x T| the first term of 

Eq. (9.8.10) is simply proportional to V )   (co« - co"), and hence the 

mean total Doppler shift, which may be determined immediately from the 

spectral analysis of the reflected radiation bundle, gives a direct measure 

of the strain momentum. 

The factor of proportionality between nT and |x T|  is readily 

obtained from the observation that as a result of the collisions with the 

photons the constituent particles of the test body will, during the colli- 

sion time At, undergo uncontrollable displacements in addition to the 

displacements which they would undergo in the absence of the measurement, 

of order 

£*lr    = m_1 (pT" - PT«) At . (9.8.MO 

Imposing the uniform strain requirement AzlT ■ x ^^.l    and takinS note 

of Eq.. (9.8.38)1 we therefore infer 

nT = I m COQ-1 (As11/At)|x
1
Tl « m L As^. (9.8.I15) 

From Eq. (9.8.1(5) it then follows that the uncertainty in the strain momen- 

tum measurement is given by 
1 



f 
iÄ« - (Ät/As^) AY ^(co» - a)"). (9.3»^) 

Since the energy of the final radiation 'bundle is measured with arbitrary 

precision in the spectral analysis^ the uncertainty in the mean total Doppler 

shift is due entirely to the initial energy uncertainty: 

AV V («B« - ay")    = AE. (9«8'^7) 

T n 
T 

Equation (9.8. If6) together with the uncertainty relation (9«8.35) therefore 

leads again to (9.8.9), showing that the conjugate relationship between s^ 

and n is maintained even though the test body is no longer strain-rigid. 

We may note that the condition a,0 » AE together with (9.8.1»0) further 

reinforces the limitation (9.8.29) on the smallness of allowable measurement 

domains. We have 

L » M ») nTü)0 » At" ) n,.  . (9.8.148) 

T T 

On the other hand, we must evidently have 

>» 1 , (9-8.49) l'r 

which together with (9.8.52) leads to 
1 

L»> i J (I2yn1.)
2»> 1  • (9.8.50) 

X    T 
T 

Under restrictions of such stringency the composition of the radiation bundle 

can easily be arranged so that the condition (9.8. i»9) is compatible with 

(9.8.I+5), which., in combination with (9.8.I2) and (9.8.2U) yields 
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I nT « ML AS^ ~ 12 i | L . (9-8.51) 

Before completing the detailed description of the measurement process let 

us enumerate the sources of uncertainty in the field measurement which remain 

to be discussed. These are:  (l) the disturbance in the field produced by the 

uncontrollable component of the stress-energy density resultine from the 

strain uncertainty As;L1 associated with the measurement of it»;  (2) the 

disturbance produced by the radiation bundle; (5) the boundary uncertainties 

arising from the zero point oscillations of the test body; (4) the disturbances 

produced by compensation mechanisms which will presently be introduced. Of 

these we shall show that only the first is significant under the limitations 

which have already been imposed on the structure and dimensions of the test 

body and the parameters of the measurenient. 

As far as the radiation bundle is concerned the only uncertainty which its_ 

emission produces in the gravitational field is that due to the uncertainty 

£&    in the energy transferred to it from the group of clocks constituting the 

radiation source at the center of the test body. The main effect which the 

emission of the radiation bundle has on the gravitational field can be com- 

puted in advance—and hence allowed for—from a detailed knowledge (avail- 

able in principle) of the structure of the radiation source and the arrangement 

of the various mirrors. This point is important since the same argument also 

applies to the test body itself. As has been pointed out by Heitler (195*0 " 

is only the uncontrollable motion of the test body which gives rise to an 

uncertainty in the field.  In the present case this motion produces a quad- 

rupole change in the stress-energy tensor, of magnitude given by (9.8.50). 

The monopole field of the test body, on the other hand, is already known, and 

does not need to be compensated for by introducing, for example, charges 
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of opposite sign as Bohr and Rosenfeld did for the measurement of the elec- 

tromagnetic field. This is fortunate in the present case, since negative 

masses do not exist. 

The uncertainty in the energy exchange between radiation source and 

radiation bundle gives rise to an uncertainty in the stress-energy density of 

order 

&T AE , (9-8.52) 

which is also the same as the order of the uncertainty involved in the energy 

exchange between the interparticle coupling mechanisms and the clocks, which 

takes place when the elastic moduli are altered. The ratio of the uncertain- 

ties (9.8.52) and (9.8.30) may be expressed in the forms 

&T 
AT 

AE 
MAs 11 12 L^? AT-'  12       5E      XT' 

(9-8.53) 

the final inequality following from (9»8.32).  it is seen that the uncertainty 

6T may be neglected im comparison with AT provided 

T >» X'1 »  1. (9.8.510 

This is the first instance in which we have encountered an absolute limitation 

on T . We note, whoever, that such a limitation was already implied by the 

conditions (9.8.13), (9.8.27) and (9.8-28): 

T » TAs^ ~ 12 ^ J >» 1 (9-8.55) 

The zero-point oscillations of the test body are, for measurement 

theoretical purposes, the same as those computed nonrelativistically in 

Section 5. This follows at once from a consideration of the relative 
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magnitudes of the elements of the lower right hand corner of the wave-operator 

matrix appearing in Eq. (9-6.29).  In view of the conditions (9.8.15) and 

(9.8.Ö) the mass density of the test body is extremely small compared to 

unity,,, and therefore F^« , ^a"^",  ^€" 
are negligihle compared to 

are it ''ii +^ ■*■    "y "^ 

FP&e * . The Green's functions G   ,8, , G €„^i  , G_e"5"7,&, 

consequently negligible compared to G±e"r', the spatial components of which 

are well approximated by Eq. (9.5.^) Thus, although the vacuum fluctuations 

of the gravitational field in principle contribute to the zero-point oscil- 

31 lations of the test body, in practice they may be neglected.   Condition 

(9.5.59) may therefore be invoked directly to show that the imprecision of 

the boundary of the test body due to the initial position uncertainties of 

its component particles is completely negligible. The only question which 

remains concerns the diffusion of this boundary in time due to the statistical 

distribution of zero-point velocities which exists just prior to the decoupling 

of the particles. The magnitude of this diffusion is determined by the 

average value of the product vava in the ground state. Making use of 

Eq. (9.6.69) and neglecting all the propagation functions except Gab, > we 

' have, repeating the arguments which led up to Eq. (9-5.55), 

1/    \    11m     (+) (9.8.56) 
<VV = x'-x i G  aa»,(0)(0») V      ? > 

Introducing the Fourier decomposition (9.5.1»8) and the phenomenological 

cut-off (9.5-56), we then find I 
I 
I 
I 1V7 

I 

(vv\   = *_ (2c+ + c ) . (9.8.57) 
\ a a/    m« *•  t   £ 

In view of the conditions (9.5.60), (9-5.61) and (9.8.15) it therefore follows 

that 



1 

(y v v>5 T « L , (9.8.56) 

which shows that the boundary difTusion may also be neglected. 

The motion imparted to the test body in the photon-particle collision 

process cannot, however, be similarly ignored. It must, in fact, be cancelled. 

This is accomplished by a procedure due to Bohr and aosenfeld. Immediately 

after the time interval At , during which the initial strain momentum n* 

is measured, we give each particle an impulse which is precisely opposite to 

the impulse it received from the radiation bundle, whereby the particle is 

again brought to "rest," to the same degree of accuracy as previously per- 

mitted by the zero point oscillations. In the present case this is conveniently 

accomplished by having each particle emit a burst of photons in an appropriate 

direction.  The same process may also be used during the time interval At 

in the transverse slab used for the entrapment and delay of the original 

photons, in order to prevent uncontrollable displacements from occurring in 

this region. The stress-energy density of the additional photons and hence 

their gravitational effect can, like that of the original radiation bundle, 

be taken into account to the accuracy 5T given by Eq. (9.8,52). 

At the end of the time interval T the same strain-momentum measurement 

process must be repeated, to obtain a value for «".  Immediately following 

this measurement, however, the interparticle coupling forces are restored and 

52 the test body resumes its previous dimensions.   The uncontrollable part of 

the stress-energy density therefore vanishes prior to the time interval T 

while inside of this interval it is equal to that produced by a constant 

uniform strain As,, . After the interval T a memory of the strain As11 

is left in the contribution which it makes to the vibrational energy upon 

restoration of the elastic forces. This contribution is, however, of order 
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(As  )2 and is easily seen to be negligible.33 The (0)1 and 11 components of 

he uncertainty in the strain tensor ore therefore expressible, to good accuracy, 

in the forms 

^(oHo) " c- pc/*ii 9(xl + lL) 0(i L ■ xl) 

+ | PQ^II   
[B(xl + | L) + B(| L - x1)]} 

0(x2+ |L)e(|L - x2)e(x3 + lL)e(lL . x3)e(x0)e(T - x0),       (9-8.59) 

^(0)1    =   ^1(0) 

- p^xW + |L)e(|L - x1)e(x2 + |L)e(| - x2) 

X e(x3 + I L)9(|L -  x3)[B(x0)  - B(T - x0)]. (9.8.60) 

the xise of delta functions to represent effects at the boundary of the space- 

time averaging domain being permitted because of the smallness of As^ and At. 

The first term inside the curly bracket in Eq. (9*8.59) represents the effect 

of the change in mass dnesity due to the expansion Asr^ while the second term 

represents the additional surface layer of mass on the ends of the test body pro.' 

duced by this expansion.  Equation (9.8.6O) describes the momentum density 

associated with the sudden changes in the strain at the beginning and end of 

the interval T,  It is readily verified that 

^(0)-0),0  + ^(O)1,! " 0  ' 
(9.8.61) 

inconformity with the requirement that the uncertainty in the stress-energy 

density must be independently conserved. This requirement, in fact, leads us 

to infer, from the conservation law 
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AT^0^ +   £0^,2.    "   0 » (9-8,62) 

the existence of a momentum flux component 

^11 " i-Pd^u^1 + lL)(lL " xl>e(xl + |L)e(|L - x1)e(x2 + |L)0(|L - x2) 

X 0(x3 + |L)0(|L - x3)[5«(x0)  + 8«(T - x0)J    , (9-8.63) 

describing the uncertainty in the exchange of momentum "between the test body 

and the two radiation bundles. It will be noted that the above conservation 

laws may be immediately obtained from the compact and (as it turns out) very 

important representations 

^(0)(0)     "    12 ^ ^11 VU    ' 

^(0) 1      =    ii ^ ^11 WE,01    ,       < (9-8.6W 

^11 =    J2 ^^ ^11 WE,00    » 

^T        vanish.     In an arbitrary quasi-Cartesian coordinate system we have 

^(0)(0)    "    12 ML8T-*3 ga «b WE.ab    ' 

^(0)  a      -    12 ^ ^ aa «b WE,0b    '       ^ (9'8-65) 

^ab *    12 ^ ^ aa «b WE,00    ' 

where the    a      are the direction cosines of the x -axis fixed in the test a 

body and the subscripts on the strain uncertainty have been dropped. 

The gravitational effect of the uncontrollable component of the stress, 

energy density will be examined in the case of the measurement of a 
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where W  is the weight function (9.8.19). All the other components of 
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single field average E . Due to the self-actions of the test hody 

Eq.(9.8.IO) must now be replaced by 

.,"-,./'  = Jg MjLj^fi1 + f1'1) . (9.8.66) "I " "I* 

Here E '  represents the gravitational field due to the entire test-body- 

photon complex averaged over the space-time domain defined by the test body 

itself, if this were completely controllable it could be computed in advance 

and used in the equation 

E1 = 12 Mj-1 Lj-2 Tj"1 («j" - Jtj«) - l1'1 (9.8.67) 

to express the field average B  which would exist in the absence of the 

test body in terms of the experimental data n' and n"  • As it is, however, 

the uncertainty in the stress-eeergy density gives rise to an uncertainty 

AE ,  in the field,which satisfies equation (9»7.27) with E^  and T 

replaced by AE ,  and AT   respectively.  Solving this equation with the 

aid of the retarded Green's function D"(x - x1) and making use of Eqs. 

(9.8.65) we easily find 

AE f
1'1      =  i_ M  T. 2 T A^A«1 ^ M^. Lj* T^^As-1 , (9.8.68) 

where A '  is the quantity defined by Eq.(9.8.21), taken with the two space- 

time domains identical. Making use of the uncertainty relation (9.8.9) we 

may therefore write the total uncertainty in the measurement of E  in the 

form I 
1 '      <& - r^-t  * i-2 -vAi*1'V • 

I 
Mj-Lj^r^' 

(9.8.69) 
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Upon minimization with respect to   As    this reduces to 

1 
ZJ1    -     (A1'1!^ , (9.8.70) 

which is a special case of Eq. (9.2«30) of Part I. 

As was pointed out in Section 2 the measurement of any single observable 

should be performable with unlimited accuracy, and a method was indicated for 

accomplishing this by introducing a compensation mechanism. In the present 

case it is convenient to choose a compensation mechanism which is a generali- 

zation of the system of mechanical springs introduced by Bohr and Rosenfeld. 

Instead of allowing the elastic moduli to fall completely to zero during the 

time Interval T  we hold the component c-i-iii at the value 

-1111 - 25 1ViI ^1 Vx ^ 2 V^I - 2 

We note that this value is completely determined by the parameters of the 

AÄ,i " " Po"lAtii,ii ■ Po'^im^W 

" " I2 "o'1 Mi2 h'1 Ti A1'1 AsI • (9.8.72) 

These displacements make the following contribution to the strain momentum 

during the time interval 1L.: 

Vi - /po^cvV-vV^ 
vi 

I 

c, ,,,  = ^ Mr^-^Cx1 + I LT)(LT - I x
1)A1'1 . (9.8.71) 

] 
measurement and is therefore known in advance. With nonvanishing c..,....  the 

T 
uncontrollable strain As  will give rise to mÄchanical forces causing 

additional displacement A^z, of the constituent particles of the test body, 

which are determined by the equation 
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|/po^1+lLin|LI-X,^cBi'l,ld' 
VlTi 

12 «I LI2 TI AEI'1 ' 
(9.8.73) 

The uncertainty relations following from Eq.(9.8.66) should therefore he 

modified to read 

^l" 12 "l LI2 TI ^ + ^'^ + ^«1 

- Is "i Li2 TI ^ ' 
(9-8.7M 

which is equivalent to (9.8.12), showing that the effects produced by the 

uncontrollable strain As have now been cancelled. 

It is still necessary to show that although the elastic modulus 

(9.8.71) produces a significant effect on the strain momentum, its effect on 

the strain Itself during the interval Tj is negligible. This will be the 

case if the period of oscillation of the strain produced by this modulus is 

long compared to T-. From Eq. (9'8.72) we see that this period is given by 

p.8.75) 
1 

,i»iir2 % -  (WVV11!!»1'1!' 
Remembering that [A1»1) ~ (Rcrit)

2 and making use of (9-8.13) and (9-8.23), 

we have 

1 
L-r. 2 T     LT     W «: 

(9.8.76) 

31* which establishes the utility of the compensation mechanism.' 

We come finally to the verification of the uncertainty relation (9.5-22) 

for the measurement of two field averages S1 and E11. Equation (9.8.66) 
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must be replaced by the pair of equations 

«i" - V - n *&%&+ ***+ ElI,I) '      ' 
>, (9.9.77) 

11       \ ]- *&%& - v*1 -111'1) - v1 - KI,IISI1 '     ; 

-xx- - -xx« - bW^«11 + SI1'11 + ^"^ - KIISI1 - K^sI 5 
(9-8.78) 

15»* 

! 

:i 

.. 

Hi" - "n' ■ h »ift! V«11 * «^ * 8I'11' ' ^ -' 

where the notation is obvious.  Here the mutual uncertainties in the measure- 

ments cannot be completely cancelled. As has been pointed out in Section 2, 

the greatest possible mutual accuracy requires the use not only of compensation 

mechanisms but also of a correlation mechanism. We consider first the case 

in which the space-time domains VjTj and VJJTJJ. overlap. The appropriate 

compensations and correlations are in this case achieved by introducing non- 

vanisLing elastic moduli e^^  in the two test bodies during the respective 

time intervals Tj and T^,    and bringing into action, during the interval 

of overlap of T  and l"  , a set of mechanical springs linking adjacent 

component particles of the two bodies in the region of spatial overlap. 

Except in the case in which the x^axes of the two bodies are parallel the 

linkage between the bodies should not be direct; in the general case the 

elastic coupling forces should be transmitted through a set of bent levers, 

similar to the one shown in Fig (9-^), the pivots of which are fastened to a 

third elastic body which freely interpenetrates the other two, has comparable 

mass, and remains stiff throughout the entire measurement process.  It is 

not hard to show that Eqs. (9*8.77) then tak6 the. modified-forms 

. 



ö=cos',a0
Ioa

:i1 

.j^, 9_li..  Correlation device. 



Utwro tdL  oouiiiciuatfl     itj  ,   KJJ ,   »j JJ    ore independent linear factions 

of the  (essentially three)  independent elastic constants involved in the con- 

pensation and correlation devices   (see Yeh,  i960).    Taking note of the uncer- 

tainty relations    AjtjAs1 ~ 1,    An^11 ~ 1 ,    and the fact that 

&1'11    •    12 MjhV1'11^1 '  etC-  ' (9^8-79) 

we  see that hy choosing the elastic constants in such a way that 

«xx   -  jfc    «xxVSx2*11'11   - t    (9-8•aD, 

-x,n   ■  35    Wx^xVxx'»1'11 ' 'II'I> y 
ve may reduce the uncertainty relations following from Eqs. (9,8.76) to the 

forms 

JSI ^^ + ^M^^jA
1^1-^1!^1, (9.8.81) 

M LjT'jAs 

^11 ^  tl   + I-M^^IA^
11-^1!^,        (9.8.82) 

the product of which, upon minimization with respect to the product As As , 

reduces to (9.3.22). 

The case in which the time intervals TI and T^    overlap while the 

spatial regions do not has heen treated for the electromagnetic measurement 

problem by Bohr and Rosenfeld. Their method may be immediately applied also 

to the gravitational problem, but we refer the reader to their paper for 

details.  Evidently there will be no mutual interference between the two 
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measurements at all In this case unless the test bodies ore separated by 

distances of order    T    or less.    Since we have always assumed    L > T , the 

case of spatial overlap and the case in which the time intervals do not over- 

lap are really sufficient to provide an adequate test of the quantum formalism. 

In the latter case the introduction of a correlation mechanism is actually 

unnecessary since either    A •' or A    *       (or both) ■vanishes.    Only the 

individual compensation mechanisms are then needed.    It should,  of course, 

always be remembered that the explicit form (9.8.21) for the quantities 

A1*11    ,  etc.  is valid only in local regions.     If the two test bodies are 

situated at large distances from one another,  they will continue to provide a 

valid test of the quantum formalism, but the Green's function    D'(x - x8) 

appearing in the uncertainty relation will have to be replaced by the function 

G" 

scopio curvature of space-time on the propagation of disturbances in the 

gravitational field. 

We conclude this section with an outline of the measurability analysis 

for the components H ,  of the Riemann tensor.  The test body which is 

appropriate for measuring averages of these components consists of two 

mutually interpenetrable cubes having identical masses.  Each is composed of 

a uniform distribution of spinning particles, the spins of one being aligned 

antiparallel to those of the other, so that each has a uniform mass density 

p  and a uniform spin density, the latter being denoted by a  for one and 

- CT  for the other, a 

The measurement process is based on the ponderomotive equation (9»7«35) 

for spinning particles. Outside of the time interval T the two cubes are 

bound firmly together and possess elastic moduli which render them stiff. 

, , of Eq. (9.6.55). which takes into account the effect of the macro- 

\ 
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During the interval T the elastic moduli drop to zero, the mutual binding 

is released, and the cubes eure allowed to drift apart.  The mutual separation 

8z  at any point satisfies the equation 

P0BZa = ^b^a  ' 
(9.8.83) 

the factor 2 reflecting the fact that each cube possesses a spin angular 

momentum. The measurement of an average of the compnent H^ may evidently 

be achieved by orienting the spins in the positive and negative x -directions 

and making^ through a symmetric exchange of radiation bundles between the two 

cubes, measurements of the total relative momenta of the two cubes in the 

xa-direction at the beginning and end of the interval T. More generally the 

spins may be oriented along an arbitrary axis characterized by direction 

cosines +ßQ  •  Writing 

^a = ^a > 
(9.8.84) 

and taking note of the fact that the "reduced mass" characterizing the relative 

momenta corresponds to a density ^P0 y  we ^«ö obtain, as a result of 

measurements of the relative momenta in the x -direction, 

Pi" " Si' = IJ^o^i" " BV)dV l/poB"z'i A = ^ "bl ' 

-■^   -1 r        ^ 
Hab ä L  T J Hab d * ' 

VT 

3 
£ = LJcr  . 

(9-8.65) 

(9.8.86) 

(9.8.87) 

The weight factor for the field average is seen to be uniform in this case 

instead of parabolic. 
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We shall not give here a detailed description of the radiation bundles 

used for the relative momentum measurements, nor shall we repeat the analysr.s 

of the various sources of uncertainty which arise in the measurement process. 

It is clear that the arguments are essentially the same for ß-j,*^ ao they 

were for E,, , the main difference heing that the photon distribution at the 

moment of collision is now uniform instead of proportional to |x | . The 

only source of uncertainty which, in the end, must be taken into account is 

that due to the uncontrollable relative displacement Ax  resulting from the 

first relative momentum measurement. This relative displacement is, of course, 

held essentially constant throughout the time interval T through the use of 

a "counter impulse" as in the case of the measurement of E , and is related 

to the uncertainty Ap,     in the relative momentum measurements by 

Ax1^ ~ 1 • (9-8.88)   jl 

The uncertainty in the measurement of ß-i-Hfe-,  is therefore -T 

^ßbV  ~ SEcr   ' (9-8-89) 

which, for every value of Ax  no matter how small, can be made arbitrarily 

small by the choice of a sufficiently large value of £  .  The critical field 

strength below which we enter the quantum domain is given by Eq. (9.8.23) aB 

before, and the condition 

A(ßbHbl) - \ L'3    ,      it « 1 , (9-8.90) 

on the accuracy of the measurement, together with the necessary restriction 

Ax1 « L , (9-8.91) 

. 
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yields the requirement 

* ~ k z&i L ^L- (9.8.92) 

In the present analysis the total relative spin 2E behaves like a 

charge, and heoause it is independent of the total mass 3*1 we have here an 

adjustable charge-to-mass ratio E/M . The mass must be chosen large enough 

so that the relative displacement of the two cubes caused by the field to be 

measured remains small compared to L during the interval T. The condition 

for this is 

(E/M)ßbHbl T
2 « L . 

Remembering the weaii field condition 

[cf. (9.8.15)] we see that this will be satisfied if we choose 

M > EL-1 >» 1 

(9-8.93) 

(9.8.9^) 

(9.8.95) 

[cf. (9.8.28)], which, together with the condition (9.8.13 ) leads once again 

to the fundamental limitation (9.8.29) on the smallness of allowable measure- 

ment domains. We note that the effect of the spins themselves on the gravita- 

tional field may be ignored except during the interval T , since at other 

times they cancel one another. We also note that conditions (9.ö.92) and 

(9.8.2?) together imply that a very large number of elementary spins 

(i.  1. - , etc.) must be used in the construction of the test body. 

The commutation relations which remain to be tested are 
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[i1, a"] - | i/d^^VVV^H11^ 

X(6T„5^ + B
T„.8^ - 8

T
D>5

T„,)A(x - xM, (9.8.97) 
acw M ' ~ ad be    ab cd 

where the subscripts on the 1 and H have been dropped and an arbitrary 

quasi-Cartesian coordinate system has been Introduced relative to which the 

spins and x1-axes of the test bodies have direction cosines ßa ,  ßa   and 

a 
I  a II respectively. The function WH(x) is the weight function appro- 

a    a "■ 
priate to the measurement of 5 , having, in a coordinate system oriented with 

the test body, the form 

W_(x) = L-V^Cx1 + I L)e(| L - x1)e(x2 + I L)e(i L - x2) 
H 2 "'""Z ~      "   '"'" 2 

x e(x3 + I L)e(| L - x3) ö(x0)e(T - x0). (9.6.98) 

^r the same procedure as was used to obtain Eq. (9'8.2D) we may re-express the 

commutators (9.8.96) and (9«8.97) in the forms 

,1.11      ~II.I [I1 ,  l11]    =    i  (C^ - DiX^)    , 

[S1 ,   a11]    =    i  (B3-11 -  B11*1) 

(9-8.99) 

(9.8.100) 

where 

BI,II II 
i/d^/dV w/^xMD^x« - x)ßa

Iab
Ißc

IV 

Xl(8acBbd + \äho - Vcd^OOOoW 

* ^cV^bdOO^)  " ^VjbcOO^   "  ^cV^OC^)  " ^dV^cOO^) 
+ ^bV^dOO^J + ^dV.ÄOoCx)  + W^^x)]  , (9.8.101) 
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" 2 Iim^1,\aOt(x) + 8edWEI,abOf<x)1 ' 

D^ S     i/^/^' ^(x) D-(x - x«) aA^c'V^cef 

x U2 6<Äabd.6Aöed)wH
I1,000f(«») 

(9.8.102) 

(9.8.103) 

We consider firet the commutator (9«8.99), the testing of which requires 
m 

test bodies appropriate to the measurement of both types of components, E 

and fi , of the Riemann tensor, together with suitable compensation and cor- 

relation mechanisms. A compensation mechanism suitable for the measurement of 

f has already been described. The compensation mechanism which may convenient- 

ly be used in the test body which measures H consists of a set of mechanical 

springs joining the two interpenetrating cubes of which the test body is com- 

posed. The correlation mechanism may consist, as before, of a set of springs 

in the region of spatial overlap, connecting the two test bodies through pivot- 

ing devices as shown in Fig. (9-10.  In this case it is important, however, 

that the springs be affixed to only one of. the two interpenetrating cubes; 

otherwise no correlation is achieved. Under an arrangement of this type the 

dynamical equations describing the measurement process take the forms 

II 

(9.8.10U) 

(H11 + H11'11 + 51'11)  -   KX
11 

Ig MjL^d1 + f1'1 ♦ f11'1) - v1" KI, ir 

pTT"- p ' '11 n EiiTir 11 ^I,!!8 
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The quantity ä1*11 represents the contribution which test body I 

makes to the field average H over the space-time domain defined by test body 

II . Its uncertainty may be coniputed by inserting the stress-energy uncertainty 

(9.8.65) into equation (9.7-29) (with Hab and T^ replaced by AH^ and 

£S>        respectively) and solving the latter with the aid of the retarded 

Green's function D"(x - x») . One finds 

^gl.II = 1_ MjL^C1*11^1 . (9.8.105)    1 

=11 I 
In order to compute in a similar manner the uncertainty ÄE '  in the con- 

tribution which test body II makes to the field average E over the space- 

time domain defined by test body I , we must first determine the form of the      I 

stress-energy uncertainty of the test body II resulting from the measurement     | 

of the relative momentum p « . This uncertainty receives contributions from 

two sources: from the mass and from the spin of the test body. At first sight 

it would appear that the mass contributes a dipole term to ^0^0j which is 

proportional to Ax11 .  It is to be remembered, however, that Ax   is the 

relative displacement of the two cubes composing the test body. The center 

of mass of the test body as a whole remains at rest in the coordinate system 

originally defined by the body. ^ Therefore the mass contribution is that of 

two equal and outwardly oriented dipoles at opposite ends of the test body. 

TT P 
Furthermore the strength of these dipoles is proportional to (Ax ) and not 

to Ax11 • The mass contribution may therefore be neglected in comparison to 

the spin contribution which is of the first order in Ax  .It is not hard to 

see that the latter contribution, in a coordinate system oriented with the 

test body, is given by 
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AT 
(0)(0) 

(9.8.106) 

AT. (0) 

AT ab 

- \  * , ß o-Ax^fbcl L - x1) - bix1  + I L)je(x2 + I L)e(| L - x2) 
2 abc^c 

e(x3 + I L)e(| L - x3)) be(x
0)e(T - x0) , ,bc (9.8.107) 

K\cd * ^ecdV^1^^1 + I L)4 L " xl) 

X e(x2 + I L)e(| L - x2)0(x
3 + |L)0(|L - x3)]^[8(x0) - 5(T - x0) ], 

(9.8.108) 

where the label "II" has been temporarily omitted and where the implicit 

assumption has been made that all elastic and binding forces are restored at 

the end of the interval T so that the test body returns to its original state 

(except for slight changes resulting from its intervening experiences which 

may be neglected).  Equation (9.8.107) is obtained immediately from Eq.. (D.15) 

Appendix D by carrying out a differentiation with respect to x to represent 

the effect of the displacement Ax .  The components AT^ given by Eq. 

(9.8.108) are then inferred from the energy-momentum conservation laws.  One 

easily verfies that 

^(0)(0io + ^(.0/^- = 0 ' 

ATa(0),0 + ^b = 0 . 

(9.8.109) 

(9.8.110) 

These relations also follow at once from the representation 

I 

AT (0)(0) 
=     0 

AT a(0) 2 abc fc H^lb    ' 

^.b -   I E'a"1<5a1Scd * \\ci*iaVS,0c    ■ 

4 

y 

16U 

(9.8.111) 



which,  in an arbitrary quasi-Cartesian coordinate system, takes the form 

N 1 ^(o)(o)   =   0   ' 2 
^(0)   " I «^eVrtc^M ' A        (9.8.112)    1 

^ab     = I £'l:^cad(8ad\ec + Sd^o)WH,Oe  . J ] 

Inserting (9.8.112) into the retarded solution of Eq. (9.7.^7), we finally get 

Al11'1 = S^T^D11»1^11 . (9.8.113) 

Similarly, inserting (9.8.112) into the retarded solution of Eq.. (9.7.28) and 

making use of the identity 

'II II 

.«I.I 

eabcedef = 6ad8beBcf + 6ae&bfScd + 8af5bd8ce 

- 8 ^6,3  - 5 .8, 8 , - & 6. ,8 . ,      (9.8.114) adHsf ce   af De cd   ae bd cf ' 

we find 

^=11,11 = ^^^11,11^11 t (9.8.115) 

The \mcertainty    AE '       is given by Eq.. (9.8.68)  as before. 

If ve now choose the various elastic  constants  in such a way that 

K
I - iWhV^1  ' 

KII    -   ^ll^ll2311'11    » \ (9.8.116) 

%ii = k^nvVii^11 + DI1'1) J J 
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then the uncertainty relation« following flrom Eqs. (9.8.10^) take the forms 

AS1 ~ 12   "I   +|
EIITIIICI'II-DII'V11   ' (9.8.117) 

(9.8.118) 

the product of which, upon minimization with respect to the product As Ax  , 

reduces to 

Ag-yi11 jC1'11 - D11'1]  , (9.8.119) 

in accord with the commutation relation (9.8.99)» 

The testing of the commutation relation (9.8.100) is again entirely 

analogous to the above. Two pairs of spin-endowed cubes axe needed in this 

case. The compensation and correlation mechanisms again consist of mechanical 

springs.  The springs for the correlation mechanism Join a cube from one of the 

two test bodies to a cube from the other through the usual pivot devices. The 

dynamical equations describing the measurement process are 

PI" - Pi'   -  £iV21 + &'1 + BlI'I) " V1 " K
I,II

XI1
   ' 

PII" - pn' - £
II

T
II(

SI1
 

+ BI1'11 + SI,I?) - v11 - K
I,II

XI 

The various uncertainties are given by 

AS1'11 = EJT B1»11^1 , etc. 

Therefore, by choosing the elastic constants in such a way that 

(9-8.120) 

(9.8.121) 
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(9.8.182) 

%1I I^IIVII^1'11**11'1)  ' 

we obtain the uncertainty relations 

Al1 + i^T„|B
I'II-BII':WI   . 

SJTJAX I   2 "II III 

AH11 

(9.0.123) 

(9.8.12^) 

the product of which, upon minimization with respect to the product Ax Ax  , 

reduces to 

EIITI^X 
ix + lw1;11-*11'1!-1 

^Al11-     jB1'11 - B11*1! (9.8.125) 

The measurement theoretical verification of the formalism of the quantum theory 

of geometry to lowest order of perturbation theory (weak-field approximation) 

is thus complete. 

i 
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(y.9) Conclusions and outlook. 

The conclusions which may he drawn from the investigations of this chapter 

are the following: 

(1) The Uncertainty Principle and the theory of measurement lead to a 

well defined framework within which to develop a manifestly covariant formalism 

for the quantum theory of gravitation. The elements which enter naturally into 

this formalism are the Green's functions describing the propagation of small 

disturbances. The quantitative results of the formalism are completely unam- 

biguous at the level of the weak-field approximation. Ambiguities connected 

with the choice of factor sequences can arise, if at all, only in higher orders 

of perturbation expansions based on the weak-field approximation as a starting 

point.  It should be emphasized once again that the weak-field approximation is 

an assumption only about the magnitude of the P.iemann tensor in any finite domain 

of Interest,  It is not an assumption about asymptotic conditions or about the 

global structure of space-time. 

(2) Averages of the gravitational field (i.e., Riemann tensor) over space- 

time domains having dimensions large compared to lO-"3 cm. can be measured with 

a degree of accuracy well within the domain of quantum phenomena provided that 

test bodies of sufficient refinement but violating no fundamental principles 

are used. Examination of the mutual interference of such measurements verifies 

in detail the statistical predictions of the quantum formalism.. 

(3) The gravitational field, like all other fields, therefore must be 

quantized, or else the logical structure of quantum field theory must be pro- 

foundly altered, or both.  The possiblity is left open that the quantum theory 

of geometry may itself contribute deeply to the future development of quantum 

field theory. 
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Ik)    The dimension 10   cm, constitutes a fundamental limit on the small- 

Principle of Complementarity. 

These conclusions give rise immediately to the following questions:  Why 

does experiment appear to show that a practical limit on the domain of appli- 

-13 
cability of classical concepts already exists at or near 10   cm. ? Can 

ness of allowable measurement domains. Below this limit it is impossible to 

interpret the results of measurements in terms of properties or states character- 

izing the individual systems under observation. Although this conclusion was 

reached within the framework of an investigation based on the weak-field approxi- 

mation it is obviously of general validity.  The very uncertainty in the energy 

of the devices (e.g., photons) needed to make an observation in such a small 

region will in virtue of the uncontrollable gravitational disturbance which it 

produces, completely destroy the statistical significance of the results of the 

observation. This is true for the measurement of any field, not only the 

gravitational field. The concept of "field strength" therefore has, below 

10"^2 cm., no objective meaning in terms of observations performed at the 

classical level. That is to say, 10   cmi constitutes an absolute limit on 

i 

I 

i 

I 

the domain of applicability of classical concepts,  even as modified by the 

! 

gravitation, in virtue of this fact, really have any connection with elementary 

particle physic»? 

Certainly, doubts must arise when one notes that if test bodies suitable 

for detecting the quantum properties of the gravitational field are to be con- 

structed out of normal matter, condition (9.8.28) implies that they will will 

be visible to the naked eye! Even if one could imagine them to be constructed 

out of nuclear matter their dimensions would have to be at least of the order 

of a micron.  Conversely it is only to 1 oies of such size that gravitational 
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effects themselves can properly be ascribed. For, if an attempt were made to 

measure the gravitational field (i.e., Riemann tensor) of such a body, the 

measurement, like all field measurements, would have to be performed over some 

finite domain of dimension L , so that even if the mass m of the body were 

concentrated practically in a point the strongest field which could be measured 

would be of order m L-^ . But the quantum fluctuations themselves are of order 

L-^ [cf. Eq.. (9.8.23)].  Hence, it makes no sense at all to talk about the 

-20 
gravitational field of an individual elementary particle (m~ 10   in dimension- 

less units).  The static field exceeds the quantum fluctuations in magnitude 

only for bodies more massive than 3-07 x 10" gram ( the unit of mass in the 

dimensionless system). From this point of view the gravitational field is 

plainly a statistical phenomenon of bulk matter, although its fluctuations are 

governed by quantum laws. 
op _13 

Any attempt to bridge the gap between 10 J cm. and 10   cm. by means of 

gravitation alone seems practically hopeless. At the very least such an attempt 

would have to invoke exceedingly complicated processes.  Misner and Wheeler 

(1957) have made a preliminary study of the dynamics and properties of "worm- 

holes" and have suggested that such objects may provide an avenue for connecting 

gravitation with elementary particles.  In view of the fact that a "wormhole" is 

strictly a classical entity, however, the suggestion must be viewed with a 

measure of skepticism.  It is far from clear that "wormhole" concepts would 

provide useful mental images in the ultra-microscopic domain except in a purely 

topological sense.  The possible dynamical existence of "wonnholes" depends 

crucially on the nonlinearities of Einstein8s equations, but the effect of these 

nonlinearities must be described in c-number terms. The situation is similar to 

that which exists in the relation of the theory of exact classicoi solutions of 

Einstein's equations to the quantum theory. The case which is sometimes made 
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for discovering and studying the properties of such solutions—particularly 

the properties of wave solutions—because of their supposed significance for        ^ 

the quantization program, is largely spurious. The study of nonlinearities at 

the classical level in which large numbers of coherent quanta are involved has 

little relevance for the description of graviton-graviton interactions. The 

same is true of other field theories- In electrodynamics, for example, a 

study of the solutions of the dynamical equations of a charged classical boson 

field interacting with a classical Maxwell field will never lead to the concept 

of vacuum polarization, no matter how exhaustively pursued. This does not mean, 

of course, that classical nonlinear problems are unimportant. Indeed, they 

arise in the course of fundamental investigations on the behavior of large 

disturbances. Quantum mechanics, however, is a theory of small disturbances,        i 

and the nonlinear problems which arise within its framework are usually abstract 

and without classical models. j 

Only in the domain below lO-32 cm. is quantum mechanics itself transformed 

into a theory of large disturbances and violent fluctuations. "Theory," of 

course, is hardly the proper word to use here since it does not yet exist. 

Quantum mechanics is certain to be very different from what we know it in this 

mysterious region.  But this brings us hack again to the problem of the great 

gap between lO-13 cm. and 10~32 cm.  It is necessary to admit that something 

"happens" at lO-13 cm. which has every appearance of being fundamental and not 

merely a statistical manifestation of basic phenomena occurring at a much deeper 

level. Complexities are present, to be sure, but they do not compare with the 

complexities of atomic phenomena; and the gap between lO- cm, and 10   cm, 

is negligible compared to that between 10 ^ cm. and 10 ■J cm. Since the theory 

of gravitation has nothing special to say at 10" 3 cm. it is necessary to look 

i 
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elsewhere for the descriptioa of Nature at this level- However, the geometrical 

viewpoint of general relativity need not be abandoned. In fact, it has n«*er 

been coinpletely abandoned, as is evidenced from the many attempts to bring order 

into the description of elementary particle phenomena by Introducing "internal" 

spaces and invariance groups. On the other hand, it has not, since Einstein, 

been pursued with the single mindedness and integrity which it perhaps deserves. 

It may, for exessple,  be worth while to make strong attempts to link the apparent 

"internal" spaces more directly to the ordinary fovir-dimensional space-time of 

everyday experience, even at the risk of resurrecting some long abandoned so- 

called "unified field theories" in modified or generalized form. The present 

unattractiveness of theories of this type is due at least in part to the lack 

of a quantum formalism for them.  If the quantization program for gravitation 

can be successfully pushed through then these theories may become more attractive. 

The existence of 10"13 cm. (or even 10" cm. or 10" 'öm.) as a practical 

limit on the smallness of measurement domains does not mean that the terminology 

of field theory ("field strengths,""quanta," "fluctuations," etc.) should be 

abandoned below this level. Although the concepts embodied in the terminology 

become, in this domain, purely abstract rather than experimental, no question 

of "hidden variables" is involved. The continued use of continuous parameters 

(l-e., coordinates) to describe dynamical systems at this level is an unavoidable 

requirement of the theory of group representations.  The fact that the invari- 

ance groups of physics are continuous is established already at the classical 

level. Except in the case of Abellan groups, continuous groups cannot be 

successively approximated by finite groups. There is no in-between.   Even 

at 10_32cm. the continuum description must persist if the general coordinate 

transformation group is really fundamental. Here, however, the use of a 
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pbenomenological "cut-off", reflecting the absolute meanln&Lessness of concepts 

like "field strength" at this level, may be valid. Deser (1957) bas given 

heuristic arguments for this possibility, based on the Feynman quantization 

method. ^ Such a "cut-off" would, of course, eliminate the ultra-violet di- 

vergences of field theory and establish a fundamental role for gravitation in 

elementary particle physics. Moreover, the existence of a "cut-off" at this 

wavelength is not obviously incompatible with the success of modern field 
in 

theory/correlating experimental data. 

A brief look should be taken at the possible form which the quantum theory 

of geometry may aasune in its eventual development. Although it has been shown 

that the requirement of asymptotic flatness at infinity is not essential to the 

quaatization program it will nevertheless often be a convenient assumption in 

practice. When asymptotic flatness holds, the linearized theory should provide 

an excellent framework within which to describe conditions in the remote past 

and future, when the fields associated with the small number of real quanta 

involved in any given quantum problem are dispersed to a state of infinite weak- 

ness. The Riemann tensor is then effectively a true invariant, and its positive 

and negative frequency components should be directly uaable for the annihilation 

and creation of initial and final gravitons. The actual interactions hetween 

these gravitons as well as the interactions between gravitons and other quanta 

will then be described in terms of Green's functions.  Instead of retarded and 

advanced Green's functions the Feynman propagator will be appropriate for this 

description.  (It differs from the former only in the nature of its boundary 

conditions; it satisfies the same basic equations [Eqs. (9.3.7a,b)].) The 

development, however, should not ^e kept within the confines of the flat space- 

time approach. For, an examination of the inevitable infinities of the theory 

from the Lorentz invariant standpoint leads to a very pesoimistic view of the 
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j      renormalizatlon pictiire. In opposition to this view it must be constantly 

borne in mind that the "bad" divergences of quantum gravidynamics are of an 

B      essentially different kind from those of other field theories. They are direct 

consequences of the fact that the light cone itself gets shifted by the non- 

linearities of the theory. But the light-cone shift is precisely what gives 

j the theory its unique interest, and a special effort should be made to separate 

the divergences which it generates from other divergences. The latter may well 

be amenable to standard treatment, if they remain at all. 

As for the light-cone-shift it is impossible to foresee what techniques 

will be necessary in order to recqgnize it unambiguously and to deal with it. 

As a pure guess one might imagine that the badly divergent leading terms of a 

perturbation expansion will prove to be summable to a convergent expression 

characterizing a "cut-off" frequency which leads to a breakdown of causality 

in the strict Lorentz-coveriant sense and represents the effect of the fluc- 

tuations in the light cone from which it originated. It must be confessed, 

however, that the problem remains shrouded in darkness and that the end of the 

chapter leaves us only at the beginning of the subject. 

Chapel Hill, North Carolina 

November i960 
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(9.3) Derivation of results used In Section 6. 

The confutation of the equations for small disturbances starts with 

the verification of the following variations: 

1 1 
6(^2)2 =  . (..2)2 ^yy 

8v a 

'<* 

vVv^ + vßBz«,ß , 
1 

&w0 = - * 8ab (-^) 
2\"2 ö(z) >(z) t^vs 

tiV 

8 
ö(z)     c)(2) R a 

8n = - n (vVs^ + 8Z
a,a) , 

Öp - - PCV^S^ + Sza,a) + ^^J ^ 

8R 
T = er T - BP T. 

(B.1) 

(B.2) 

(B.3) 

(B.J0 

(B.5) 

(B.6) 

(B.T) 

(B.Ö) 

These expressions are obtained by straightforward extension of the methods 

begun at the end of Section 5, taking into account the fact that the metric 

itself, as well as the zss is now subject to variation.  Making use of 

these expressions together with the definition (9.5.76) and the dynamical 

equations, and taking note of the admonitions expressed in Eqs. (9«6.5), 

(9.6.6) and (9.6.7), one finds, by direct computation. 

St^  = - tC*6«^7 + t^bz^^ + t
ßr^a,7 

78 ' (B.9) 
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I 

* »(7 •(y *(j 

+ i(p ♦ w)v>1vvv<TvT ♦ 2 v^t1" ♦ 2 TVt^T 

- Wt^ - v0rvTtllv - c11^] 8CTT ♦ n v^v^J, (B.lü) 

6(T ^     )=    -  T ^     8z7      + T^r(2s -  s ) 

+  {[(p + w)v v^v^v    + 2 / ▼''t?    +  2 v^v^t 

1 

SG^V    =    i g2 (g^g'^ - i g^VgCrT)gpX(6g_ + 8S - 6g -  6g ) 2  tt      VB      B g   tt      ö       /tt      V   ^CTT.pX ^pX'CTT Kap'TX ^TX^Op' 
1 

+ I g^g^V1" + S
aT^v -   2 ^R1'"'' -  2 g^R^ + g,a<IgVTR 

- | g HVg<lTR)66CTT . (B.13) 

Use of these expressions in the variation of the dynamical equations (9.6.9), ! 

(9.6.10), (9.6.11)^ (9.6.I2) leads at once to Eqso (9.6.18) through (9.6.2I) 1 

of the text. 

Ihe proof that the Green»s functions of Eq» (9»6.29) are consistent 

with the supplementary conditions (9.6.210, (9^6.25) involves the derivation 

of some identities satisfied by the wave operators F , , etc.  3y a straight- 

forward calculation which makes use of the readily verified identity 

(t^)   H taV. + tPV
2  + (vVt^

5 + v^v^t
06 - c^V R ,   (B.U) v     »y 7 7 y°o ' 

one finde 

Aw- " -"^eJ' (b-i5) 
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A^. = - UP * w) v^V6a£(.ßJ.y , (B.lc) 

(B.17' 

From this it follows that 

- (0 , v7,6(z,2») ,  0) 

'G JV \ 

■   f A.«. . rm. , .T'")   o»'e,       o«'V      o»;,6, 
± 71        ± 

d\" 

{(»'b(z,z")  ,0,0) 

l/«± ,±      r' ^" + I<G a«p"e' ' GaV     ' GWV6.)] d z"'     (B-1Ö) 

where 

a, 
F(z,8«)     H    -   [(p + w)v"5(2,z»)J,a (B.19) 

It may therefore be inferred thac 

va^iG 
t    + i r*   ) 
08'-ß  2 U cee,; 

vaVG ay'ö'-ß + 2 G c^r'B^ 

(^4 i 

.(5V   , 

(B.2D) 

(B.21) 

(B.22) 

I 
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tlife(§" being the Greeks functions for the operator (B.19)- Hence, finally. 

2 ^G oee' ' Gc^  * Gop7,6, ;J 5A/5zr 

(z')     8A 

vw 

• e fdt• /d3u« &[OD' (SA/ee") + v7' {ÖA/bz7*) 1 (B.23) 

which vanishes in virtue of the invariance condition (9-6,16), thus confirming 

the condition (9-6-26). 

In order to verify the supplementary condition (9-6-27) one makes use of 

the additional identities 

1 Oß      jpß _ 0 

2 S V  ^J'-ß " 0  ' 

1 oß„   t „oß 
ße' e'-ß 

(B.2^) 

(B.25) 

- gVL&iM* -1 g'VV,6^'   ],    (B-26) nl2v 76    -ß 

which can be obtained by a straightforward calculation making use of the 

Einstein equations (9.6.12), the commutation laws for covariant differentiation, 

and the algebraic identities satisfied by the Riemann tensor.  Using these 

relations, together with the easily verified identity 

I 
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b0? 0    /«B'-ß " 2 (8 r'-Ö« + 6 5«*y«' * (B.27) 

we get 

(0,1^ ,-|(B
a
7.,B. +^6..7f)) 

~J 1.2 S (FßJ" ' ße" ' ß   '      (  J" '   « *       'ß-* 

/ ^± 
J"0« 

x ^e" 
e« G  7    G 7'5S CL\- 

\„* 
G e,lf;lle, G €"5"  0 €"!;VöS/ 

X (G e"^i«Qt » G e"|"  * G s«>5"ytöt)iß" 
d z" *    (B.28) 

where F^ „ Is the wave operator for the Green's functions®1  j of 

Eq. (9.6.28): 

r-^,. a g er e ^„.^ - g-R ße n„ (B.29) 

Prom thi.s it follows that 

(g^s
ß6-l^g''6)Gi

76
e^ß=(^^ 

whence, making use of an integration "by parts, we have 

(B.30) 

(B.31) 

(B.32) 
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(W8 -1 w8)*Vß 

X 8A/6ze 

\   5(z«) 
\ä(t»,u») 

„±    e» 
»   ,r78~    *• G ^»^.'»ß rt/-.),( 

\ 

8A 

'lw « /-« e'C 

=    e M^^-k5*^ +2^% ^'-J (B.33) 

which vanishes in virtue of the invariance condition ^o6.17 )* 

The evaluation of the Green's functions G^,, G^QI «n01»8 use of th* 

property of self-adjolntness possessed by the lower right hand comer of the 

wave-operator matrix in Eq. (9.6.29)7 a Property which may he verified by 

explicitly computins the Integral 

/  F^.,. a 

\ 

if*6,  , P«3''•s■ j 

I   \ 
F aß pr'ö'oß 
7' 

/ 

for arbitrary X7  and X „g, , and showing that It vanishes. As a result 

of this self-adjointness the corresponding corner of the Green's-function 

matrix satisfies the reciprocity relation (see Section 3) 

(B.3^) 

,^7' ,ia 
K88« 

,?7»a 
•R« 7«5 

^Qß7*  G±Oß7«8'/     \G 7,B,Oß  G'7,6,aß 7 
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which permits E<is. (B.2l) and (B.22) to be rewritten in the forms 

^'(O^. ♦|0%.6.) "   T^(..,.), (B.35) 

^6,(^7..6.
+|0±QPr^) = 0- (B'36) 

The Green's functions (B.3lf) are precisely those which solve the equation 

/ Fae"  Fa 

[^e„    ^£^ 
G^, d^z" ,(3.37) 

which is derived from E9. (9.6.29)' Therefore, making use of the explicit 

forms (9.6.32), (9.6.35) and (9,6.^7) for the wave operators FaJ, , ^jt 

and the Green's functions G .'  , and carrying out an integration hy parts, 
JQ 

one finds 

G 8« 

C^G* 

/ G**7        n** 

f&K* /d^z»«« I 
J    J       \      +    y"       + 

7"6" \ [ r'^»8« 

,± 7 ..neu   F 
y-S" J»««0« 

\ / 

/n,Vv7"v5" j 
/G 7"°*" - i ^,._.. 2 "  7"8" 

^j-e- d'z,, 

\ G~Qß7,,.6" + 2 G Oß7"6"/ 

/ 
^ v%+(Z",z) i 

I B(u,,,u'). (B.38) 

\      0    _/ 
Now, the equation which the Green's functions C/_ satisfy may be written, 

in terms of the proper time, in the form 

J   '. ■< vv . i ...     ., V /..    , A (B.39) - d[(p +w )@r*l/öT = - B(T- T«)ö(U,U') 
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[see Eq..   (B.19).],  which has  the solution 

-1 
(^*(8,*')  =  + (Po + W0)-

L e( + (T - T'))6(U,U^). (B.itO) 

Therefore Eq.. (B-38) becomes 

\ G±aeG• / 

(B.1Ü.) 

where the 0* are the functions defined in Eq. (9.6.52) of the text. I 

I 

. 
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(9.C) The stresaless medium In a fixed metric. 

For a stressless medium we have « - 0 , p0 - 0 , v r\ 

^v = pvJ1vv We retain the framework of clocks in order to have an intrinsic 

proper time in terms of which to define covariant Poisson brackets.  However, 

we asBume the passage to the intrinsic proper time has already heen made, and 
Jrf-jö ff       + 

we Ignore the clock variables. Only the Green« s functions G31^ , 0 remain, 

satisfying the equations 

P      «**' pv'vV**'.^ - if>0 
RQß» 

- (PVVG1^)^ = - 8(Z, z«). 

The solutions of Eq. (C.2) are 

ö*(a, z«)    =   x p^emr - T'))(T - T«)6(U, £), 

(c.i) 

(C.2) 

(c.3) 

yielding 

G(z,z.)   -  - Po'V-TMa^uJ) - (c-^ 

In order to solve Eq.. (C.l) we introduce the two-point function o-(z, zs) 

which equals one half the square of the distance along the geodesic between z 

and z*.  Its defining equations are 

1 a   „ 
2 -a -      ' 

(c.5) 
lim 

z» -> z 
a « 0 , 

lim ,T   - n       1±m    a - g 
z« -» z ^a ~ 0 *   z" -* z 'Qß    oß 

from which we obtain 

^ ß " a-ß 
a a ' ■ or • •a 

(c.6) 
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"•a*.'-' * '-oAV " '•*'    "  0    • (0-8> 

I 
I 
I 
I 

(C-9) |" 

It is convenient also to introduce the two-point function 

11m        D 
Dop5    =   " ^c^'    » z« -♦ z     (aß« 

and its inverse D"
2
^* , which exists at least when z and z« axe suffici-      j 

ently close together: 

V0"1"7' ° 6cs -     v"1*" ■ *° ■ <C-M) 

I 
1 

We note that indices induced by covariant differentiation commute when they 

refer to different points. From Eq, (C»6) we therefore infer 

'.V-r + ^c/V " Daß' = 0 ' (C"11)     3 
which, together with the law of differentiation of inverse matrices, yields 

a V1^8  - a a D"1*3* + D"1^' = 0 . (C.12) 
"7 '   7 

Since the particle world-lines of the stressless medium are geodesies we 

hare have • 

a 8(u, u«) = V^(T - T«)5(u, u«) , OetBCu^u«) = - v s (T-T)B(U,U» ) , 

(C.13) 

and since 

it follows that 
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D-^'v JB(u; u«) = v^Cu, u«) . 

We now assert that the solutions of Eq, (C.l) are 

o**' = V1e(*<T " T,))(T " T,)&^ £)irlaß' ' 

(C.15) 

(C.lb) 

I 
I 
I 
I 
I 

To prove this we first compute 

Vaß8   = Tp-^^r-r.)^, u'XD-
3^' .a/D"^'.J v'G 

= » Po^eC^r - T»))BK ^K0/*1**' . (C.l?) 

in which Eqs.   (C=12) acxd (C.13) are used.    Then, making use consecutively of 

Eqs.   (C.12),(C.5),   (C.9),(C.7) and the commutation law for covariant differen- 

tiation, we get 

»   P0
_1   e(»(T   -   T«))B(U,    U«)(T   -   T')-1 

'Vv A^vV 

K (a    a « ^ + er a a ^ - a afi)D a ^-löß« 
y •   B 

-1  „Qß« p       B^^ 

+ Pn"1 6(+(T - T»))8(U,  U')(T - r*)'1^7^   c    Tf1^* 
AV*    "* 

p    b^    + v'v R 7ebG ^      , 

6      -7   •£ 

from which Eq.   (C.l)  follows,.    We therefore have 

rW' Po'1^- T,)5Qi>^D■laß,   ' 

(C.18) 

(C„19) 

and from Eq.   (9-6.53)  of the text we obtain the Poisson bracket 
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- - PQ^T- T')6(U, U')^'  , (C.2D) 

^, H D-10^8 + vV , (C.2L) P 

which may toe compared with Eq. (9-^50) for the siugle relativistic particle in 

flat space-time. 

From Eq. (C.15) it follows that 

V I**3' 6(u, u«)  = 0,        F^'^tBKu«)  = 0  .      (C.22) 

This relation, together with Eq. (9-5.00), enables us to show the consistency 

of the Poisson toracket (Co2Q) with the restriction v v = -1 « We have 

1 

{ (-v^ ) , zp ) = - V^'Cz , z1" ) 

V^va(z
a, £%)\ = 0 . (C.23) 

ß' 
: 

•7 

The fact that it is the function D--^  which appears in the Poisson toracket       | 

(CSD) may toe understood in terms of the disturtoance in the momentum of a con-       i 

stituent particle, and hence in the direction of its world line, which results 

from a measurement of its position.  For D~ ^  may toe recognized as the 

matrix representing the transformation from the variatoles  z , zK  which speci- 

fy the geodesic "between z and z' toy means of its end points, to the variatoles 

, cr  , which specify it toy means of one of its end points and the t&ngent 

vector at that point.  If the tangent vector c Ri  is varied, the resulting 

variation in z  is * 

Bz« = - D-2^' öa.ßl . (C.2U) 

The matrix D~ ™  evidently toecomes singular on the caustic surfaces where 
the geodesies emanating from a given point toegin to cross. 
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(9. DJ The spinning particle In a grovltatlonal field. 

We coneider first the Thomas precession. For this purpose it is convenient 

to introduce the three unit vectors n*   of  Section 5 [see £^.(9-5.6^] alon« 

the world line of the particle. The condition that the local Cartesian frame 

defined hy these vectors propagate in as parallel a fashion as possible is 

ni ^ja " 0 ' 

the dot denoting the covariant proper time derivative. Taking the covariant 

proper time derivative of the first of Eqs, (9-5.6^) ve also have 

^«a-ia^ 

which, together with (D.l),  implies 

-ia = zniß
z 

(D.2) 

(D.3) 

The spin angular momentum tensor is first defined in the local Cartesian system. 

Denoting it by Z.^  - Z^)    in this system, we may express its components in 

an arbitrary system in the form 

^ - -iWi ' (D.M 

which automatically satisfies Eqs. (9-7.3^). The Thomas precession is obtained 

by requiring, that the spin angular momentum tensor be constant in the local 

Cartesian system. That is. 

"U 
(D.5) 

Combining this with Eq. (D.3) we obtain Eq. (9-7.36) of the text. 

The definition of stress-energy density which leads to the ponderomotive 

equation (9.7-35 ^ well as to the law of Thomas precession is 
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I 

^ H fliwSPV - Wyi7)«^ - ft^^Vr1 dT' (D*6) ' 

where m is the particle rest mass and B^^ l8 ^^  delta function defined       | 

by Eg. (9.6-39) with z» replaced by x . Making use of the identity ■ 

b oß-v     2 l a.ß   ß-a' 

as well as the laws for interchanging the order of covariant differentiation, 

we may write the energy-momentum conservation law In the form 1 

o . ^;v 1 

- /[- i(,Ä0 - i^H^ . ^.a) ♦ I «'(#„., * ^.a).7i * ] 

. /((- »J° * iPrWa -1(^7 - S^^iV^ > I ftPVn ] 

- I [if* * (äPä?r - WjVK'Tv.t - f^Vr   . (B.8) 

The coefficients of the delta function    b^      and of the curl    * a,Q ' 5 Q.a 

must vanish separately in the integrand,   and hence we have 

mlP   =   'iP/ + !PßzP   + | Ra
ß76^

5 , (D.9) ] 

!PP    =    -  (z^ - i^y)^ . (D.10) 

The covariant proper time derivative of the second of Eqs. (9-7-31»-) allows us 

immediately to rewrite Eq..(D.10) in the form (9-7.36) of the text. Furthermore, 

multiplying the latter equation by V  and making use of the identity z^z      = 0 

C© 
as well as of the antisymmetry of Jr^ , we infer 
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-s» (D.11) 

whence Eq..   (D.9) reduces to Eq. (9-7.35) of the text. 

The strees-energy density for an ensemble of spinning particles labeled 

by parameters ua tray be obtained from (D.6) by multiplying by the particle 

number density DQ in the Lagrangian system and integrating over the ua : 

where p is the proper rest mass density and opv is the spin density: 

p = cm 

o^v S nlfV ,     a^ 0 . 

(D„13) 

{D.Ik) 

Equation (D.la)' may be used to verify the identification of if* with the epin 

angular momentum tensor of a constituent particle. In the case of uniform 

motion in a flat space-time the momentum density of the ensemble in a Cartesian 

rest frame is entirely due to the spin and is given by 

T(0) - l^b a      2 ab»b 
(D.15) 

According to the conventional definition ve then have, for the total angular 

momentum. 

~tot wi\'• "■'■■■' (0) A i e        /  x^r „   , d^ 2    abcj     D cd» a     /v^ 

1***%' 1*0 ****$-' 
(D-16) 
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where 

^ " I WT»  ' '•» ' Wo > (I'-17) 

^a   '   I Wi«   ' ^b   "   «*beEe • (I)-l8) 

I 
1 
"1 

'. 
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Footnotes 

!• See, for example, the introduction to the chapter by Axnowltt, Deser and 

Misner in this volume. 

2. The author hopes Einstein^s ghost will forgive him for this remark. 

3. Attempts to "evaluate" the integral when the dynamical equations are satis- 

fied generally lead to the trivialities S=ooor S=0. 

k.    As is well known from the theory of continuous groups, most of the properties 

of the group in the large are determined already by the infinitesimal trans- 

formations (neighborhood of the unit element)u  Only the global topology of 

the group requires separate investigation, but we do not concern ourselves 

with this here. 

5. It is assumed, of course, that the invariance group alone gives rise to the 

totality of all conditions (9-2-5). That no further conditions can be ob- 

tained by taking variational derivatives is assured by the Identity (9.2.3)• 

6. Here we use the word "state" in the classical sense. 

7. i.e., the action Integral restricted to this time interval.  For this com-       | 

parison it is necessary to choose one of the many otherwise equivalent inte- 

grands which does not trivially vanish when the dynamical equations of the 

apparatus are satisfied» 

8. An integration by parts is not permitted, for example, in the Integral 

/d x" /d x' G"lk F.n .,0^  unless (|)J  vanishes sufficiently rapidly in 

the remote past.  The Integral, in fact, may diverge if the latter criterion 

is not met. This is merely one aspect of the circumstance that Eqs. 

(9.3.7 a,b) are of purely formal validity and must be handled with reason- 

able care. 
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9.    It may be conjectured that this group is, in fact, the group of all mappings 

of the set of all physically distinct solutions of the dynamical equations 

into itself.    Just as each physically distinct  solution is characterized hy 

the values which it gives to all invariants,  so should the set of all invar- 

iants "be ahle to generate all physically distinct solutions differing infini- 

tesimally Irom a given one.    While the truth of this conjecture can hardly be 

doubted,  the author has not succeeded in proving it for the general case. 

10, The group invarianoe of the Poisson bracket may likewise be checked by direct 

computation and use of appropriate identities. 

11. In nonrelativistic theories it will,  of course,  be necessary to restrict the 

formalism to the sutgroup of transformations under which space and time 

coordinates transform independencly. 

12      e.g.,   if a displacement    SxP    exists  ssatlsfying Killing's equation: 

&x        + &x =   0  ,  or, when the trace of the  stress-energy density 

vanishes,  the more general equation:     &x„oV 
+ 8x

v.n = 2 siiv5x 'O " 

13.    t    is assumed, however,  to increase monotonically with proper time. 

1^.     It  should not be  supposed that the essentially phenomenological description 

of the clock falls to lead to a well defined quantum theory quite the 

contrary.     Introducing eigenvectors     |py    of the momenta    p    = mx    ,  and 

2 2 noting that the latter a-.-e constrained by the  condition    p    « - m    ,  one 

sees that the simplest covariant normalization-completeness cottdxt/tou/which 

can be written for the former is 

I 
I 
I 

TcMmMjdV   IP^SCP'
2
 + m'2){p'|    = 

P'OX) 
where pCm') is a monotonically increasing function characterizing the mass 

spectrum of the clock. Noting, further, that Eqs. (9..U.5O) and {9.k.53)  imply 
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IS,  p J - b?,  mxJ » l(^i ♦ p^)  = i 5' v 

and 

^1.<X»(TM| = i<x'(T')|m , 

wiiere the  Ix'Ci9)^ £tre eigenvectors of the X^T),, one may conveniently 

take 

.1 
/ ./ .\. .\    /^ \~2 ifp'x' + m^T8) 
<(x»(Tf)|p'/ = (2«) e ^ 

(p'x1 s p9 x' ), and hence 

/X»(T«)|X"(T")> = i/A( + )(x' - x.";m•)e
im,(T, " T") dp(m') , 

where A  (x* - x";m•) is the positive energy component of the familiar 

propagation function for a relativistic particle of mass m'. 

15. Young's modulus, the bulk modulus and Poisson's ratio are given respectively 

by 

Y = 2 |i(l + cr)  = 3k(l - 2cr),  k - X, + | H ,  cr=| X/(X + ^ • 

(See, for example, American lastitute of Physics Handbook, McGraw-Hill, New 

York, 195.7, P. 2 - 10,) 

16. The positive and negative frequency components are uniquely defined by the 

equations 

5x  = 8x ( + ) + Sx ^  ,  5x ^    = 6x ^  ,  6x ^    = - icoSx ( + ) , 
a      a       a'    a        a'   a r^-   a ' 

where oo is a positive definite Hermltian differential operator.  If the 

vector 8x ^  |0^> does not vsuiish, then because 8x *■  = - i[5x ^  , H]^       1 

which implies HBx ^+ |o)> =  (E - cu)5xa^ + '|o\ it follows that 8xa^ + '|q^ 

] 
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must represent a state in which the average energy is lower than that of the 

ground state.     But this is a contradiction since it may he readily shown 

that the Hamiltonian (9.5-23), with internal energy given hy (9.5-39),  ^ 

positive definite as long as the bulk and shear moduli are positive 

(X. > - - ti < 0) and therefore possesses a spectrum bounded from below. 

17.    This Identity is readily verified by considering the minors of the matrix 

formed by the four vectors    n^ ^    and observing that the determinant of 

the matrix itself is equal to   ,g"2 .     Here it is assumed that the vectors 

^    n ^    n ^    n ^    have the same relative orientation as displacements in 

the x0    x1,  x2 x3 directions respectively and that the permutation symbols 

are taken with the sign conventions     e^ = 1 ,     « 012^ = 1 * 

18.    The symbol    8K    .aT    is effectively unambiguous.     It means, of course, 

(8«     ) rather than    &(&.   '   J  since the latter would be trivial.   Gener- 

ally speaking, when parentheses are omited,  as in    bx^.y >    8za-ß *  &r|J.v -T ' 

etc.,  the covariant derivative is to be understood as performed on the vari- 

ation, rather than vice versa.    The same holds for ordinary derivatives. 

19- 

as in 53 
a 

»ft 
It is not hard to show that Eq, (9-6.21) may be rewritten in the form 

1 
aX,,.! 

1 

S   TX,-CTp^ 

+ g2(^vRCTT + r^v - 2 sr*VT - 2 Bw^r - ^V
T

R -1 s^1 VT
R)S

±
(JT 

+ |  [(P + w)^vVvT +  2 v^v^t^ + 2 vVt^ 

-   V V  t -   V V   t 
(IVOT-,   ± 

J      CTT 2 
i rWv^J 

I 
I 

=    -  68A/&g^ 
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20. The delta functions appearing in the definitions of these wave operators ase 

to be taken as densities of weight zero at the point z and unit weight at 

the point z«. The wave operators themselves are therefore double-densities, 

having unit weight at both z and z«. The delta functions appearing in 

the final matrix in Eq. (9^.29), on the other hand, have unit weight 

at z and weight zero at z* . 

ÖL. One of the drawbacks of the coordinate system provided by the clock frame- 

work is that under sustained compressional motion hypersurfaces of constant 

T will not remain space-like but will begin to cross the light cone after 

a period of time of the order of the reciprocal of the velocity gradient, 

but before infinite compression is reached. This is not a practical diffi- 

culty, however, when the elastic medium is used in the ground state, subject 

only to small oscillations-. Oscillations themselves, even when violent,tend 

to wash out the effect. 

22- It is well that such terms in fact appear.  It will be noted that the stress- 

energy density occurs in Eq. (9.7-3) with the opposite sign from what it has 

in Eqs. (9-3.61), (9.3.62), in analogy with the negative sign on the proper- 

time-diüplacement generator m of Eq. (9-1*--52)-  If the first term of Eq- 

(9. 7.3) ''•''■ere to stand alone, energy would then have to be defined as a neg- 

ative definite quantity- Furthermore, the first term refers only to the 

proper energy of the elastic medium and cannot describe "energy of the 

gravitational field," even assuming the concept to be meaningful in the 

general case. 

23- The structure of propagation functions in the presence of a general metric 

has been described by Hadamard (1923) and by DeWitt and Brehme (i960). 

2k.    The group in this case is Abelian and analogous to the gauge group of 

electrodynamics . 
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I 
I 

25. The Introduction of the notion of uniform motion right at the start is, of 

course, antithetical to Mach's Principle.    Any approximation Bcheme,  however, 

is almost bound to be anti-Machian, since MachU Principle is very closely 

associated with requirements of self-consistency,, which can be tested only 

after approximate results have themselves been obtained. 

26. Equation (9.7.18) has the fully covariant analog 

1 
g 

1 

RHvaT.p\ + 2 V^pvcrr + 2 Rv WT 
+ 2 Rff ^ 

1   —  p     R 
vpr      2    T   jivcrp 

- R. .R 
pX 

\xvpX      ax 2R ^RA^S^^V) UpfX v T 

+ U  - U, T+  ^'OVl'TV       "TV-OVI TTi-crv U, 
crvrv1 UH(J-VT   +      VT.HO-   "      (IT. WT -W^ 

U        s     T. Jiv Uv 2 ^v1 

which may be used,  among other things, to prove that gravitational wave fronts, 

represented by discontinuities in the Riemann tensor, propagate along null 

surfaces  (relative to the metric ahead of the front) end have polarization 

vectors which propagate in a parallel fashion along the null^eodÄslcs. 

(0 \ (0 fl\        lo' 27.    For Example: 

I1/ 

1 

\ 

/* VI 
£1° 

28, It is assumed that no resonances have built up. 

29. We here employ a coordinate system which is extended beyond the initial 

instant in such a way that g11 remains equal to unity. The role of di- 

rectly defining the coordinate system is thus temporarily withheld from the 

test body jmd is only restored to it at the end of the measurement period, 

when the body regains its previous elastic properties. This, however, does 
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not mean that the coordinate system thereby becomes any the less "intrinsic," 

since it is still uniquely determined hy a set of Initial conditions.    Actu- 

ally, the use of such a system is forced upon us by the fact that the coordi- 

nates defined by the test body are rendered ten^orarily unfit for service by 

the disturbances which the test body suffers during the measurement process 

(see belov)!    On the other hand we note that since the weak-field situation 

is assumed, the commutators of the Riemann tensor in this system axe not 

sensibly different from what they would be in a system defined at all times 

by an undisturbed body. 

50. If they did exist it would be possible to avoid the limitation (9.8.29) on 

the smallness of measurement domains.     On the other hand,  difficulties with 

the stability of the vacuum would then be encountered. 

51. Here there is no question of field-theoretical divergences.     If one were to 

calculate explicitly the contribution of the gravitational field to the | 

quantum fluctuations in the invariant strain tensor, for example, tue phe- 

nomeneiogLcal cut-off (9-5.56) would have to be used for this contribution | 

'      Just as for the contribution coming Ifom the elastic wave field.    This is 

because the metric at any point in the elastic medium has no meaning other 

than as an average over a region of volume    P  .     The problems of divergence | 

and renormalization must be considered only when the material particles in- 

volved are described ab initio in fundamental field theoretical terms. I 

These remarks also hold in the electromagnetic case considered by Bohr and 

Rosenfeld. 

52.    The state of the body before and after the field measurement is practically 

unstrained.    A field which is weak enough for quantum effects to be important 

produces an average strain in a stiff elastic medium of order 

L2 . L-l ««a or ie8B.    The strain äS^,  in contrast, may be much large 
Rcrit 
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1. 

53. Its ratio with AT is C^^^^^^/PQ^^ « (X + 2 *)/P0  » «j < ^ • 

54. 0. energy density stored in the co^ensation mechanism may he neglected in 

comparison «ith tf . *> prove this we first note that the sound velocity 

corresponding to the modulus (9.8-71) is «* order 

55 

ALLU r    A   M 

The proof then follows hy the Inequality of footnote 55- 

Here again we employ a coordinate system which is detached from the test body 

during the measurement interval    T   hut vhich is uniquely specified hy initial 

conditions.     (Cf. footnote 29) 

36. lor a purely group theoretical approach to the quantization of geometry the 

reader is referred to the papers of Klein (1955) and Laurent  (1959)- 

37. Only the most rudimentary development of the Feynman techniques has so far 

heen achieved in general relativity.    For a discussion of the problems in- 

volved in this difficult subject see the papers by Misner (1957) and 

Laurent (1959)- 

. 
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